Hướng dẫn python interpolate nan 2d

Yes you can use scipy.interpolate.griddata and masked array and you can choose the type of interpolation that you prefer using the argument method usually 'cubic' do an excellent job:

import numpy as np
from scipy import interpolate


#Let's create some random  data
array = np.random.random_integers(0,10,(10,10)).astype(float)
#values grater then 7 goes to np.nan
array[array>7] = np.nan

That looks something like this using plt.imshow(array,interpolation='nearest') :

Hướng dẫn python interpolate nan 2d

x = np.arange(0, array.shape[1])
y = np.arange(0, array.shape[0])
#mask invalid values
array = np.ma.masked_invalid(array)
xx, yy = np.meshgrid(x, y)
#get only the valid values
x1 = xx[~array.mask]
y1 = yy[~array.mask]
newarr = array[~array.mask]

GD1 = interpolate.griddata((x1, y1), newarr.ravel(),
                          (xx, yy),
                             method='cubic')

This is the final result:

Hướng dẫn python interpolate nan 2d

Look that if the nan values are in the edges and are surrounded by nan values thay can't be interpolated and are kept nan. You can change it using the fill_value argument.

How would this work if there is a 3x3 region of NaN-values, would you get sensible data for the middle point?

It depends on your kind of data, you have to perform some test. You could for instance mask on purpose some good data try different kind of interpolation e.g. cubic, linear etc. etc. with the array with the masked values and calculuate the difference between the values interpolated and the original values that you had masked before and see which method return you the minor difference.

You can use something like this:

reference = array[3:6,3:6].copy()
array[3:6,3:6] = np.nan
method = ['linear', 'nearest', 'cubic']

for i in method:
    GD1 = interpolate.griddata((x1, y1), newarr.ravel(),
                              (xx, yy),
                                 method=i)
    meandifference = np.mean(np.abs(reference - GD1[3:6,3:6]))
    print ' %s interpolation difference: %s' %(i,meandifference )

That gives something like this:

   linear interpolation difference: 4.88888888889
   nearest interpolation difference: 4.11111111111
   cubic interpolation difference: 5.99400137377

Of course this is for random numbers so it's normal that the result may vary a lot. So the best thing to do is to test on "on purpose masked" piece of your dataset and see what happen.

Tôi đã nghĩ ra một giải pháp khá thanh lịch (IMHO), vì vậy tôi không thể cưỡng lại việc đăng nó:

from bisect import bisect_left

class Interpolate(object):
    def __init__(self, x_list, y_list):
        if any(y - x <= 0 for x, y in zip(x_list, x_list[1:])):
            raise ValueError("x_list must be in strictly ascending order!")
        x_list = self.x_list = map(float, x_list)
        y_list = self.y_list = map(float, y_list)
        intervals = zip(x_list, x_list[1:], y_list, y_list[1:])
        self.slopes = [(y2 - y1)/(x2 - x1) for x1, x2, y1, y2 in intervals]

    def __getitem__(self, x):
        i = bisect_left(self.x_list, x) - 1
        return self.y_list[i] + self.slopes[i] * (x - self.x_list[i])

Tôi bản đồ để floatđể phân chia số nguyên (python <= 2.7) sẽ không kick vào và điều hủy hoại nếu x1, x2, y1y2là tất cả các số nguyên cho một số iterval.

Trong __getitem__thực tế, tôi đang tận dụng lợi thế của việc self.x_list được sắp xếp theo thứ tự tăng dần bằng cách sử dụng bisect_leftđể (rất) nhanh chóng tìm ra chỉ mục của phần tử lớn nhất nhỏ hơn xin self.x_list.

Sử dụng lớp như thế này:

i = Interpolate([1, 2.5, 3.4, 5.8, 6], [2, 4, 5.8, 4.3, 4])
# Get the interpolated value at x = 4:
y = i[4]

Tôi đã không giải quyết các điều kiện biên giới ở đây, vì đơn giản. Như nó là, i[x]for x < 1sẽ hoạt động như thể dòng từ (2,5, 4) đến (1, 2) đã được kéo dài đến trừ vô cùng, trong khi i[x]cho x == 1hoặc x > 6sẽ tăng một IndexError. Tốt hơn là nên tăng IndexError trong mọi trường hợp, nhưng điều này được để lại như một bài tập cho người đọc. :)

18 hữu ích 2 bình luận chia sẻ

Giải pháp hợp lý là gì phần lớn phụ thuộc vào câu hỏi bạn đang cố gắng trả lời với các pixel được nội suy - báo trước: ngoại suy trên dữ liệu bị thiếu có thể dẫn đến câu trả lời rất sai lầm!

Chức năng cơ sở xuyên tâm Nội suy / Làm mịn hạt nhân

Về các giải pháp thực tế có sẵn trong Python, một cách để điền các pixel đó vào sẽ là sử dụng cách triển khai nội suy Hàm cơ sở hướng tâm của Scipy (xem tại đây ) nhằm mục đích làm mịn / nội suy dữ liệu phân tán.

Với ma trận của bạn Mvà các mảng tọa độ 1D bên dưới rc(như vậy M.shape == (r.size, c.size)), trong đó các mục bị thiếu của M được đặt thành nan, điều này dường như hoạt động khá tốt với hạt nhân RBF tuyến tính như sau:

import numpy as np
import scipy.interpolate as interpolate

with open('measurement.txt') as fh:
    M = np.vstack(map(float, r.split(' ')) for r in fh.read().splitlines())
r = np.linspace(0, 1, M.shape[0]) 
c = np.linspace(0, 1, M.shape[1])

rr, cc = np.meshgrid(r, c)
vals = ~np.isnan(M)
f = interpolate.Rbf(rr[vals], cc[vals], M[vals], function='linear')
interpolated = f(rr, cc)

Điều này dẫn đến nội suy sau của dữ liệu mà bạn đã liên kết ở trên, mặc dù có vẻ hợp lý, nhưng nó làm nổi bật tỷ lệ mẫu bị thiếu so với dữ liệu thực là bất lợi như thế nào:

Hồi quy quy trình Gaussian / Kriging

Nội suy Kriging có sẵn thông qua triển khai Hồi quy quy trình Gaussian (bản thân nó dựa trên hộp công cụ DACE Kriging cho Matlab) trong thư viện scikit-learning. Điều này có thể được gọi như sau:

from sklearn.gaussian_process import GaussianProcess

gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1., nugget=0.01)
gp.fit(X=np.column_stack([rr[vals],cc[vals]]), y=M[vals])
rr_cc_as_cols = np.column_stack([rr.flatten(), cc.flatten()])
interpolated = gp.predict(rr_cc_as_cols).reshape(M.shape)

Điều này tạo ra một phép nội suy rất giống với ví dụ Hàm cơ sở Radial ở trên. Trong cả hai trường hợp, có rất nhiều tham số để khám phá - sự lựa chọn của những tham số này phần lớn phụ thuộc vào các giả định mà bạn có thể đưa ra về dữ liệu. (Một ưu điểm của hạt nhân tuyến tính được sử dụng trong ví dụ RBF ở trên là nó không có tham số miễn phí)

Inpainting

Cuối cùng sang một bên, một giải pháp hoàn toàn có động cơ trực quan sẽ là sử dụng chức năng inpainting của OpenCV , mặc dù điều này giả định mảng 8bit (0 - 255) và không có cách giải thích toán học đơn giản.

46 hữu ích 0 bình luận chia sẻ

Tôi đã nghĩ ra một giải pháp khá thanh lịch (IMHO), vì vậy tôi không thể cưỡng lại việc đăng nó:

from bisect import bisect_left

class Interpolate(object):
    def __init__(self, x_list, y_list):
        if any(y - x <= 0 for x, y in zip(x_list, x_list[1:])):
            raise ValueError("x_list must be in strictly ascending order!")
        x_list = self.x_list = map(float, x_list)
        y_list = self.y_list = map(float, y_list)
        intervals = zip(x_list, x_list[1:], y_list, y_list[1:])
        self.slopes = [(y2 - y1)/(x2 - x1) for x1, x2, y1, y2 in intervals]

    def __getitem__(self, x):
        i = bisect_left(self.x_list, x) - 1
        return self.y_list[i] + self.slopes[i] * (x - self.x_list[i])

Tôi bản đồ để floatđể phân chia số nguyên (python <= 2.7) sẽ không kick vào và điều hủy hoại nếu x1, x2, y1y2là tất cả các số nguyên cho một số iterval.

Trong __getitem__thực tế, tôi đang tận dụng lợi thế của việc self.x_list được sắp xếp theo thứ tự tăng dần bằng cách sử dụng bisect_leftđể (rất) nhanh chóng tìm ra chỉ mục của phần tử lớn nhất nhỏ hơn xin self.x_list.

Sử dụng lớp như thế này:

i = Interpolate([1, 2.5, 3.4, 5.8, 6], [2, 4, 5.8, 4.3, 4])
# Get the interpolated value at x = 4:
y = i[4]

Tôi đã không giải quyết các điều kiện biên giới ở đây, vì đơn giản. Như nó là, i[x]for x < 1sẽ hoạt động như thể dòng từ (2,5, 4) đến (1, 2) đã được kéo dài đến trừ vô cùng, trong khi i[x]cho x == 1hoặc x > 6sẽ tăng một IndexError. Tốt hơn là nên tăng IndexError trong mọi trường hợp, nhưng điều này được để lại như một bài tập cho người đọc. :)

18 hữu ích 2 bình luận chia sẻ

Giải pháp hợp lý là gì phần lớn phụ thuộc vào câu hỏi bạn đang cố gắng trả lời với các pixel được nội suy - báo trước: ngoại suy trên dữ liệu bị thiếu có thể dẫn đến câu trả lời rất sai lầm!

Chức năng cơ sở xuyên tâm Nội suy / Làm mịn hạt nhân

Về các giải pháp thực tế có sẵn trong Python, một cách để điền các pixel đó vào sẽ là sử dụng cách triển khai nội suy Hàm cơ sở hướng tâm của Scipy (xem tại đây ) nhằm mục đích làm mịn / nội suy dữ liệu phân tán.

Với ma trận của bạn Mvà các mảng tọa độ 1D bên dưới rc(như vậy M.shape == (r.size, c.size)), trong đó các mục bị thiếu của M được đặt thành nan, điều này dường như hoạt động khá tốt với hạt nhân RBF tuyến tính như sau:

import numpy as np
import scipy.interpolate as interpolate

with open('measurement.txt') as fh:
    M = np.vstack(map(float, r.split(' ')) for r in fh.read().splitlines())
r = np.linspace(0, 1, M.shape[0]) 
c = np.linspace(0, 1, M.shape[1])

rr, cc = np.meshgrid(r, c)
vals = ~np.isnan(M)
f = interpolate.Rbf(rr[vals], cc[vals], M[vals], function='linear')
interpolated = f(rr, cc)

Điều này dẫn đến nội suy sau của dữ liệu mà bạn đã liên kết ở trên, mặc dù có vẻ hợp lý, nhưng nó làm nổi bật tỷ lệ mẫu bị thiếu so với dữ liệu thực là bất lợi như thế nào:

Hồi quy quy trình Gaussian / Kriging

Nội suy Kriging có sẵn thông qua triển khai Hồi quy quy trình Gaussian (bản thân nó dựa trên hộp công cụ DACE Kriging cho Matlab) trong thư viện scikit-learning. Điều này có thể được gọi như sau:

from sklearn.gaussian_process import GaussianProcess

gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1., nugget=0.01)
gp.fit(X=np.column_stack([rr[vals],cc[vals]]), y=M[vals])
rr_cc_as_cols = np.column_stack([rr.flatten(), cc.flatten()])
interpolated = gp.predict(rr_cc_as_cols).reshape(M.shape)

Điều này tạo ra một phép nội suy rất giống với ví dụ Hàm cơ sở Radial ở trên. Trong cả hai trường hợp, có rất nhiều tham số để khám phá - sự lựa chọn của những tham số này phần lớn phụ thuộc vào các giả định mà bạn có thể đưa ra về dữ liệu. (Một ưu điểm của hạt nhân tuyến tính được sử dụng trong ví dụ RBF ở trên là nó không có tham số miễn phí)

Inpainting

Cuối cùng sang một bên, một giải pháp hoàn toàn có động cơ trực quan sẽ là sử dụng chức năng inpainting của OpenCV , mặc dù điều này giả định mảng 8bit (0 - 255) và không có cách giải thích toán học đơn giản.

46 hữu ích 0 bình luận chia sẻ

Tôi đã nghĩ ra một giải pháp khá thanh lịch (IMHO), vì vậy tôi không thể cưỡng lại việc đăng nó:

from bisect import bisect_left

class Interpolate(object):
    def __init__(self, x_list, y_list):
        if any(y - x <= 0 for x, y in zip(x_list, x_list[1:])):
            raise ValueError("x_list must be in strictly ascending order!")
        x_list = self.x_list = map(float, x_list)
        y_list = self.y_list = map(float, y_list)
        intervals = zip(x_list, x_list[1:], y_list, y_list[1:])
        self.slopes = [(y2 - y1)/(x2 - x1) for x1, x2, y1, y2 in intervals]

    def __getitem__(self, x):
        i = bisect_left(self.x_list, x) - 1
        return self.y_list[i] + self.slopes[i] * (x - self.x_list[i])

Tôi bản đồ để floatđể phân chia số nguyên (python <= 2.7) sẽ không kick vào và điều hủy hoại nếu x1, x2, y1y2là tất cả các số nguyên cho một số iterval.

Trong __getitem__thực tế, tôi đang tận dụng lợi thế của việc self.x_list được sắp xếp theo thứ tự tăng dần bằng cách sử dụng bisect_leftđể (rất) nhanh chóng tìm ra chỉ mục của phần tử lớn nhất nhỏ hơn xin self.x_list.

Sử dụng lớp như thế này:

i = Interpolate([1, 2.5, 3.4, 5.8, 6], [2, 4, 5.8, 4.3, 4])
# Get the interpolated value at x = 4:
y = i[4]

Tôi đã không giải quyết các điều kiện biên giới ở đây, vì đơn giản. Như nó là, i[x]for x < 1sẽ hoạt động như thể dòng từ (2,5, 4) đến (1, 2) đã được kéo dài đến trừ vô cùng, trong khi i[x]cho x == 1hoặc x > 6sẽ tăng một IndexError. Tốt hơn là nên tăng IndexError trong mọi trường hợp, nhưng điều này được để lại như một bài tập cho người đọc. :)

18 hữu ích 2 bình luận chia sẻ

Giải pháp hợp lý là gì phần lớn phụ thuộc vào câu hỏi bạn đang cố gắng trả lời với các pixel được nội suy - báo trước: ngoại suy trên dữ liệu bị thiếu có thể dẫn đến câu trả lời rất sai lầm!

Chức năng cơ sở xuyên tâm Nội suy / Làm mịn hạt nhân

Về các giải pháp thực tế có sẵn trong Python, một cách để điền các pixel đó vào sẽ là sử dụng cách triển khai nội suy Hàm cơ sở hướng tâm của Scipy (xem tại đây ) nhằm mục đích làm mịn / nội suy dữ liệu phân tán.

Với ma trận của bạn Mvà các mảng tọa độ 1D bên dưới rc(như vậy M.shape == (r.size, c.size)), trong đó các mục bị thiếu của M được đặt thành nan, điều này dường như hoạt động khá tốt với hạt nhân RBF tuyến tính như sau:

import numpy as np
import scipy.interpolate as interpolate

with open('measurement.txt') as fh:
    M = np.vstack(map(float, r.split(' ')) for r in fh.read().splitlines())
r = np.linspace(0, 1, M.shape[0]) 
c = np.linspace(0, 1, M.shape[1])

rr, cc = np.meshgrid(r, c)
vals = ~np.isnan(M)
f = interpolate.Rbf(rr[vals], cc[vals], M[vals], function='linear')
interpolated = f(rr, cc)

Điều này dẫn đến nội suy sau của dữ liệu mà bạn đã liên kết ở trên, mặc dù có vẻ hợp lý, nhưng nó làm nổi bật tỷ lệ mẫu bị thiếu so với dữ liệu thực là bất lợi như thế nào:

Hồi quy quy trình Gaussian / Kriging

Nội suy Kriging có sẵn thông qua triển khai Hồi quy quy trình Gaussian (bản thân nó dựa trên hộp công cụ DACE Kriging cho Matlab) trong thư viện scikit-learning. Điều này có thể được gọi như sau:

from sklearn.gaussian_process import GaussianProcess

gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1., nugget=0.01)
gp.fit(X=np.column_stack([rr[vals],cc[vals]]), y=M[vals])
rr_cc_as_cols = np.column_stack([rr.flatten(), cc.flatten()])
interpolated = gp.predict(rr_cc_as_cols).reshape(M.shape)

Điều này tạo ra một phép nội suy rất giống với ví dụ Hàm cơ sở Radial ở trên. Trong cả hai trường hợp, có rất nhiều tham số để khám phá - sự lựa chọn của những tham số này phần lớn phụ thuộc vào các giả định mà bạn có thể đưa ra về dữ liệu. (Một ưu điểm của hạt nhân tuyến tính được sử dụng trong ví dụ RBF ở trên là nó không có tham số miễn phí)

Inpainting

Cuối cùng sang một bên, một giải pháp hoàn toàn có động cơ trực quan sẽ là sử dụng chức năng inpainting của OpenCV , mặc dù điều này giả định mảng 8bit (0 - 255) và không có cách giải thích toán học đơn giản.

46 hữu ích 0 bình luận chia sẻ

Giải pháp hợp lý là gì phần lớn phụ thuộc vào câu hỏi bạn đang cố gắng trả lời với các pixel được nội suy - báo trước: ngoại suy trên dữ liệu bị thiếu có thể dẫn đến câu trả lời rất sai lầm!

Chức năng cơ sở xuyên tâm Nội suy / Làm mịn hạt nhân

Về các giải pháp thực tế có sẵn trong Python, một cách để điền các pixel đó vào sẽ là sử dụng cách triển khai nội suy Hàm cơ sở hướng tâm của Scipy (xem tại đây ) nhằm mục đích làm mịn / nội suy dữ liệu phân tán.

Với ma trận của bạn Mvà các mảng tọa độ 1D bên dưới rc(như vậy M.shape == (r.size, c.size)), trong đó các mục bị thiếu của M được đặt thành nan, điều này dường như hoạt động khá tốt với hạt nhân RBF tuyến tính như sau:

import numpy as np
import scipy.interpolate as interpolate

with open('measurement.txt') as fh:
    M = np.vstack(map(float, r.split(' ')) for r in fh.read().splitlines())
r = np.linspace(0, 1, M.shape[0]) 
c = np.linspace(0, 1, M.shape[1])

rr, cc = np.meshgrid(r, c)
vals = ~np.isnan(M)
f = interpolate.Rbf(rr[vals], cc[vals], M[vals], function='linear')
interpolated = f(rr, cc)

Điều này dẫn đến nội suy sau của dữ liệu mà bạn đã liên kết ở trên, mặc dù có vẻ hợp lý, nhưng nó làm nổi bật tỷ lệ mẫu bị thiếu so với dữ liệu thực là bất lợi như thế nào:

Hồi quy quy trình Gaussian / Kriging

Nội suy Kriging có sẵn thông qua triển khai Hồi quy quy trình Gaussian (bản thân nó dựa trên hộp công cụ DACE Kriging cho Matlab) trong thư viện scikit-learning. Điều này có thể được gọi như sau:

from sklearn.gaussian_process import GaussianProcess

gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1., nugget=0.01)
gp.fit(X=np.column_stack([rr[vals],cc[vals]]), y=M[vals])
rr_cc_as_cols = np.column_stack([rr.flatten(), cc.flatten()])
interpolated = gp.predict(rr_cc_as_cols).reshape(M.shape)

Điều này tạo ra một phép nội suy rất giống với ví dụ Hàm cơ sở Radial ở trên. Trong cả hai trường hợp, có rất nhiều tham số để khám phá - sự lựa chọn của những tham số này phần lớn phụ thuộc vào các giả định mà bạn có thể đưa ra về dữ liệu. (Một ưu điểm của hạt nhân tuyến tính được sử dụng trong ví dụ RBF ở trên là nó không có tham số miễn phí)

Inpainting

Cuối cùng sang một bên, một giải pháp hoàn toàn có động cơ trực quan sẽ là sử dụng chức năng inpainting của OpenCV , mặc dù điều này giả định mảng 8bit (0 - 255) và không có cách giải thích toán học đơn giản.

46 hữu ích 0 bình luận chia sẻ