Làm thế nào để bạn chia một số trong một tuple trong python?

Một số lớp bộ sưu tập có thể thay đổi. Các phương thức cộng, trừ hoặc sắp xếp lại các thành viên của chúng tại chỗ và không trả về một mục cụ thể, không bao giờ trả về chính thể hiện của bộ sưu tập nhưng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

Show

Một số hoạt động được hỗ trợ bởi một số loại đối tượng; . Hàm thứ hai được sử dụng ngầm khi một đối tượng được viết bởi hàm

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
34

Kiểm tra giá trị thực¶

Bất kỳ đối tượng nào cũng có thể được kiểm tra giá trị thực, để sử dụng trong điều kiện

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
35 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
36 hoặc dưới dạng toán hạng của phép toán Boolean bên dưới

Theo mặc định, một đối tượng được coi là đúng trừ khi lớp của nó định nghĩa phương thức

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
37 trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 hoặc phương thức
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
39 trả về 0 khi được gọi với đối tượng. 1 Dưới đây là hầu hết các đối tượng tích hợp được coi là sai

  • hằng số được xác định là sai.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31 và
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    38

  • số không của bất kỳ loại số nào.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    43,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    44,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    45,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    46

  • trình tự và bộ sưu tập trống.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    47,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    48,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    49,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    50,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    51,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    52

Các phép toán và hàm dựng sẵn có kết quả Boolean luôn trả về

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 nếu sai và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 nếu đúng, trừ khi có quy định khác. (Ngoại lệ quan trọng. các phép toán Boolean
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
57 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
58 luôn trả về một trong các toán hạng của chúng. )

Phép toán Boolean — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 58, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 57, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 61¶

Đây là các phép toán Boolean, được sắp xếp theo mức độ ưu tiên tăng dần

Hoạt động

Kết quả

ghi chú

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
62

nếu x sai, thì y, ngược lại x

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
63

nếu x sai, thì x, ngược lại y

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
64

if x is false, then

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56, else
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

(3)

Notes

  1. This is a short-circuit operator, so it only evaluates the second argument if the first one is false

  2. This is a short-circuit operator, so it only evaluates the second argument if the first one is true

  3. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    61 has a lower priority than non-Boolean operators, so
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    68 is interpreted as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    69, and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    70 is a syntax error

Comparisons¶

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the Boolean operations). Comparisons can be chained arbitrarily; for example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
71 is equivalent to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
72, except that y is evaluated only once (but in both cases z is not evaluated at all when
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
73 is found to be false)

This table summarizes the comparison operations

Hoạt động

Meaning

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74

strictly less than

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
75

less than or equal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
76

strictly greater than

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
77

greater than or equal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78

equal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
79

not equal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
80

object identity

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
81

negated object identity

Objects of different types, except different numeric types, never compare equal. The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78 operator is always defined but for some object types (for example, class objects) is equivalent to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
80. The
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
75,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
76 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
77 operators are only defined where they make sense; for example, they raise a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
88 exception when one of the arguments is a complex number

Non-identical instances of a class normally compare as non-equal unless the class defines the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
89 method

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object, unless the class defines enough of the methods

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
90,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
91,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
92, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
93 (in general,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
90 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
89 are sufficient, if you want the conventional meanings of the comparison operators)

The behavior of the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
80 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
81 operators cannot be customized; also they can be applied to any two objects and never raise an exception

Two more operations with the same syntactic priority,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
98 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
99, are supported by types that are iterable or implement the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
900 method.

Numeric Types — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 901, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 902, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 903¶

There are three distinct numeric types. integers, floating point numbers, and complex numbers. In addition, Booleans are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using double in C; information about the precision and internal representation of floating point numbers for the machine on which your program is running is available in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
904. Complex numbers have a real and imaginary part, which are each a floating point number. To extract these parts from a complex number z, use
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
905 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
906. (The standard library includes the additional numeric types
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
907, for rationals, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
908, for floating-point numbers with user-definable precision. )

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals (including hex, octal and binary numbers) yield integers. Chữ số có chứa dấu thập phân hoặc dấu mũ mang lại số dấu phẩy động. Việc thêm

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
909 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
910 vào một chữ số sẽ tạo ra một số ảo (một số phức có phần thực bằng 0) mà bạn có thể thêm vào một số nguyên hoặc dấu phẩy động để có được một số phức có phần thực và phần ảo

Python hỗ trợ đầy đủ số học hỗn hợp. khi một toán tử số học nhị phân có các toán hạng thuộc các kiểu số khác nhau, thì toán hạng có loại "hẹp hơn" được mở rộng sang toán hạng kia, trong đó số nguyên hẹp hơn dấu phẩy động, hẹp hơn phức hợp. So sánh giữa các số thuộc các loại khác nhau hoạt động như thể các giá trị chính xác của các số đó đang được so sánh. 2

Các hàm tạo

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
911,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
912 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
913 có thể được sử dụng để tạo các số thuộc một loại cụ thể

Tất cả các loại số (ngoại trừ phức tạp) đều hỗ trợ các phép toán sau (để biết mức độ ưu tiên của các phép toán, hãy xem Mức độ ưu tiên của toán tử ).

Hoạt động

Kết quả

ghi chú

tài liệu đầy đủ

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
914

tổng của x và y

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
915

sự khác biệt của x và y

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
916

product of x and y

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
917

quotient of x and y

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
918

thương số sàn của x và y

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
919

remainder of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
917

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
921

x phủ định

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
922

x không thay đổi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
923

absolute value or magnitude of x

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
924

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
925

x converted to integer

(3)(6)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
911

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
927

x converted to floating point

(4)(6)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
912

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
929

a complex number with real part re, imaginary part im. im defaults to zero

(6)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
913

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
931

conjugate of the complex number c

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
932

the pair

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
933

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
934

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
935

x to the power y

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
936

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
937

x to the power y

(5)

Notes

  1. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int. The result is always rounded towards minus infinity.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    938 is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    940 is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    941,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    942 is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    941, and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    944 is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42

  2. Not for complex numbers. Instead convert to floats using

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    924 if appropriate

  3. Conversion from floating point to integer may round or truncate as in C; see functions

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    947 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    948 for well-defined conversions

  4. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and positive or negative infinity

  5. Python defines

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    949 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    950 to be
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    55, as is common for programming languages

  6. The numeric literals accepted include the digits

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42 to
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    953 or any Unicode equivalent (code points with the
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    954 property)

    Xem https. //www. unicode. org/Public/14. 0. 0/ucd/extracted/DerivedNumericType. txt for a complete list of code points with the

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    954 property

All

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
956 types (
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
902) also include the following operations

Hoạt động

Kết quả

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
959

x truncated to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
960

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
961

x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
962

the greatest

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
960 <= x

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
964

the least

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
960 >= x

For additional numeric operations see the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
966 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
967 modules

Bitwise Operations on Integer Types¶

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out in two’s complement with an infinite number of sign bits

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the comparisons; the unary operation

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
968 has the same priority as the other unary numeric operations (
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
969 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
970)

This table lists the bitwise operations sorted in ascending priority

Hoạt động

Kết quả

ghi chú

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
971

bitwise or of x and y

(4)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
972

bitwise exclusive or of x and y

(4)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
973

bitwise and of x and y

(4)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
974

x shifted left by n bits

(1)(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
975

x shifted right by n bits

(1)(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
976

the bits of x inverted

Notes

  1. Negative shift counts are illegal and cause a

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    977 to be raised

  2. A left shift by n bits is equivalent to multiplication by

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    978

  3. A right shift by n bits is equivalent to floor division by

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    978

  4. Performing these calculations with at least one extra sign extension bit in a finite two’s complement representation (a working bit-width of

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    980 or more) is sufficient to get the same result as if there were an infinite number of sign bits

Additional Methods on Integer Types¶

The int type implements the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
981 abstract base class . In addition, it provides a few more methods.

int. bit_length()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
51

More precisely, if

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
982 is nonzero, then
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
983 is the unique positive integer
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
984 such that
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
985. Equivalently, when
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
923 is small enough to have a correctly rounded logarithm, then
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
987. If
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
982 is zero, then
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
983 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42

Tương đương với

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6

New in version 3. 1

int. bit_count()

Return the number of ones in the binary representation of the absolute value of the integer. This is also known as the population count. Example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9

Tương đương với

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
63

New in version 3. 10

int. to_bytes(length=1 , byteorder='big' , * , signed=False)

Trả về một mảng byte đại diện cho một số nguyên

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
64

Số nguyên được biểu diễn bằng byte độ dài và mặc định là 1. Một

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
991 được nâng lên nếu số nguyên không thể biểu thị được với số byte đã cho

The byteorder argument determines the byte order used to represent the integer, and defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
992. If byteorder is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
992, the most significant byte is at the beginning of the byte array. If byteorder is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
994, the most significant byte is at the end of the byte array

The signed argument determines whether two’s complement is used to represent the integer. If signed is

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 and a negative integer is given, an
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
991 is raised. The default value for signed is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

The default values can be used to conveniently turn an integer into a single byte object. However, when using the default arguments, don’t try to convert a value greater than 255 or you’ll get an

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
991

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
73

Tương đương với

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74

New in version 3. 2

Changed in version 3. 11. Added default argument values for

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
999 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6300.

classmethod int. from_bytes(bytes , byteorder='big' , * , signed=False)

Return the integer represented by the given array of bytes

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
77

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
992. If byteorder is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
992, the most significant byte is at the beginning of the byte array. If byteorder is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
994, the most significant byte is at the end of the byte array. To request the native byte order of the host system, use
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6304 as the byte order value

The signed argument indicates whether two’s complement is used to represent the integer

Tương đương với

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
82

New in version 3. 2

Đã thay đổi trong phiên bản 3. 11. Added default argument value for

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6300.

int. as_integer_ratio()

Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator. The integer ratio of integers (whole numbers) is always the integer as the numerator and

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55 as the denominator

New in version 3. 8

Additional Methods on Float¶

The float type implements the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
956 abstract base class . float also has the following additional methods.

float. as_integer_ratio()

Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
991 on infinities and a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977 on NaNs

float. is_integer()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the float instance is finite with integral value, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
90

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in numerical work

float. hex()

Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers, this representation will always include a leading

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6312 and a trailing
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6313 and exponent

classmethod float. fromhex(s)

Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing whitespace

Note that

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6314 is an instance method, while
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6315 is a class method

A hexadecimal string takes the form

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
0

where the optional

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6316 may by either
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
969 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
970,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6319 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6320 are strings of hexadecimal digits, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6321 is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6. 4. 4. 2 of the C99 standard, and also to the syntax used in Java 1. 5 onwards. In particular, the output of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6314 is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6323 format character or Java’s
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6324 are accepted by
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6315

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply the coefficient. For example, the hexadecimal string

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6326 represents the floating-point number
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6327, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6328

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
1

Applying the reverse conversion to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6328 gives a different hexadecimal string representing the same number

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
2

Hashing of numeric types¶

For numbers

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
982 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6331, possibly of different types, it’s a requirement that
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6332 whenever
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6333 (see the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6334 method documentation for more details). For ease of implementation and efficiency across a variety of numeric types (including
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
902,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
908 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
907) Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number, and hence applies to all instances of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
907, and all finite instances of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
902 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
908. Essentially, this function is given by reduction modulo
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6343 for a fixed prime
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6343. The value of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6343 is made available to Python as the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6346 attribute of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6347

CPython implementation detail. Hiện tại, số nguyên tố được sử dụng là

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6348 trên các máy có độ dài C 32 bit và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6349 trên các máy có độ dài C 64 bit

Here are the rules in detail

  • If

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6350 is a nonnegative rational number and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6351 is not divisible by
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6343, define
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6353 as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6354, where
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6355 gives the inverse of
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6351 modulo
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6343

  • If

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6350 is a nonnegative rational number and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6351 is divisible by
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6343 (but
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6361 is not) then
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6351 has no inverse modulo
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6343 and the rule above doesn’t apply; in this case define
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6353 to be the constant value
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6365

  • If

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6350 is a negative rational number define
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6353 as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6368. If the resulting hash is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    941, replace it with
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6370

  • The particular values

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6365 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6372 are used as hash values for positive infinity or negative infinity (respectively)

  • For a

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    903 number
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6374, the hash values of the real and imaginary parts are combined by computing
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6375, reduced modulo
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6376 so that it lies in
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6377. Again, if the result is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    941, it’s replaced with
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6370

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash of a rational number,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
902, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
903

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
3

Iterator Types¶

Python hỗ trợ khái niệm lặp qua các vùng chứa. This is implemented using two distinct methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the iteration methods

One method needs to be defined for container objects to provide iterable support.

container. __iter__()

Trả về một đối tượng iterator . Đối tượng được yêu cầu hỗ trợ giao thức iterator được mô tả bên dưới. Nếu một vùng chứa hỗ trợ các kiểu lặp khác nhau, thì có thể cung cấp các phương thức bổ sung để yêu cầu cụ thể các trình lặp cho các kiểu lặp đó. (Ví dụ về một đối tượng hỗ trợ nhiều hình thức lặp sẽ là một cấu trúc cây hỗ trợ cả truyền tải theo chiều rộng và theo chiều sâu. ) Phương thức này tương ứng với vị trí

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6382 của cấu trúc kiểu cho các đối tượng Python trong API Python/C.

Bản thân các đối tượng lặp được yêu cầu hỗ trợ hai phương thức sau, cùng nhau tạo thành giao thức lặp

trình lặp. __iter__()

Trả về chính đối tượng iterator . Điều này là bắt buộc để cho phép sử dụng cả bộ chứa và bộ lặp với các câu lệnh

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6383 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
98. Phương thức này tương ứng với vị trí
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6382 của cấu trúc kiểu cho các đối tượng Python trong API Python/C.

trình lặp. __next__()

Trả về mục tiếp theo từ trình lặp . Nếu không có mục nào khác, hãy tăng ngoại lệ

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6386. Phương thức này tương ứng với vị trí
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6387 của cấu trúc kiểu cho các đối tượng Python trong API Python/C.

Python định nghĩa một số đối tượng trình lặp để hỗ trợ phép lặp qua các loại trình tự chung và cụ thể, từ điển và các dạng chuyên biệt hơn khác. Các loại cụ thể không quan trọng ngoài việc triển khai giao thức lặp

Khi phương thức

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6388 của iterator tăng
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6386, nó phải tiếp tục làm như vậy trong các lần gọi tiếp theo. Việc triển khai không tuân theo thuộc tính này được coi là bị hỏng

Các loại máy phát điện¶

Trình tạo > của Python cung cấp một cách thuận tiện để triển khai giao thức trình lặp. Nếu phương thức

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6390 của đối tượng vùng chứa được triển khai dưới dạng trình tạo, thì nó sẽ tự động trả về một đối tượng trình vòng lặp (về mặt kỹ thuật, đối tượng trình tạo) cung cấp các phương thức
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6390 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6388. Bạn có thể tìm thêm thông tin về trình tạo trong tài liệu về biểu thức năng suất .

Các loại trình tự — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6393, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6394, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6395¶

Có ba loại trình tự cơ bản. danh sách, bộ dữ liệu và đối tượng phạm vi. Các loại trình tự bổ sung được điều chỉnh để xử lý dữ liệu nhị phânchuỗi văn bản được mô tả .

Hoạt động tuần tự phổ biến¶

Các hoạt động trong bảng sau được hỗ trợ bởi hầu hết các loại trình tự, cả có thể thay đổi và không thể thay đổi.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6396 ABC được cung cấp để giúp triển khai chính xác các thao tác này trên các loại trình tự tùy chỉnh dễ dàng hơn

Bảng này liệt kê các hoạt động trình tự được sắp xếp theo mức độ ưu tiên tăng dần. Trong bảng, s và t là các chuỗi cùng loại, n, i, j và k là các số nguyên và x là một đối tượng tùy ý đáp ứng mọi hạn chế về loại và giá trị do s áp đặt

Các hoạt động

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
98 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
99 có cùng mức độ ưu tiên như các hoạt động so sánh. Các phép toán
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
969 (nối) và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6400 (lặp lại) có cùng mức độ ưu tiên như các phép toán số tương ứng. 3

Hoạt động

Kết quả

ghi chú

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6401

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 nếu một phần tử của s bằng x, ngược lại
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6404

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 nếu một phần tử của s bằng x, ngược lại
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6407

nối của s và t

(6)(7)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6408 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6409

tương đương với việc thêm s vào chính nó n lần

(2)(7)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6410

mục thứ i của s, gốc 0

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6411

lát s từ i đến j

(3)(4)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6412

lát s từ i đến j với bước k

(3)(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6413

chiều dài của s

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6414

mục nhỏ nhất của s

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6415

mục lớn nhất của s

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6416

chỉ số của lần xuất hiện đầu tiên của x trong s (tại hoặc sau chỉ số i và trước chỉ số j)

(số 8)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6417

tổng số lần xuất hiện của x trong s

Các chuỗi cùng loại cũng hỗ trợ so sánh. Cụ thể, các bộ dữ liệu và danh sách được so sánh theo từ điển bằng cách so sánh các phần tử tương ứng. This means that to compare equal, every element must compare equal and the two sequences must be of the same type and have the same length. (For full details see Comparisons in the language reference. )

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to march forward (or backward) even if the underlying sequence is mutated. The iterator terminates only when an

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6418 or a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6386 is encountered (or when the index drops below zero)

Notes

  1. While the

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    98 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    99 operations are used only for simple containment testing in the general case, some specialised sequences (such as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6422,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6423 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6424) also use them for subsequence testing

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    4

  2. Values of n less than

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42 are treated as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42 (which yields an empty sequence of the same type as s). Note that items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python programmers; consider

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    5

    What has happened is that

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6427 is a one-element list containing an empty list, so all three elements of
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6428 are references to this single empty list. Sửa đổi bất kỳ thành phần nào của
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6429 sẽ sửa đổi danh sách duy nhất này. You can create a list of different lists this way

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6

    Further explanation is available in the FAQ entry How do I create a multidimensional list? .

  3. If i or j is negative, the index is relative to the end of sequence s.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6430 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6431 is substituted. But note that
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6432 is still
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42

  4. Lát của s từ i đến j được định nghĩa là chuỗi các mục có chỉ số k sao cho

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6434. If i or j is greater than
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6413, use
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6413. If i is omitted or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, use
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    42. If j is omitted or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, use
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6413. If i is greater than or equal to j, the slice is empty

  5. The slice of s from i to j with step k is defined as the sequence of items with index

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6441 such that
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6442. In other words, the indices are
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6443,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6444,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6445,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6446 and so on, stopping when j is reached (but never including j). When k is positive, i and j are reduced to
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6413 if they are greater. When k is negative, i and j are reduced to
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6448 if they are greater. Nếu i hoặc j bị bỏ qua hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, chúng trở thành giá trị "kết thúc" (kết thúc này phụ thuộc vào dấu của k). Note, k cannot be zero. If k is
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31, it is treated like
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    55

  6. Concatenating immutable sequences always results in a new object. This means that building up a sequence by repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime cost, you must switch to one of the alternatives below

    • if concatenating

      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6422 objects, you can build a list and use
      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6453 at the end or else write to an
      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6454 instance and retrieve its value when complete

    • if concatenating

      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6423 objects, you can similarly use
      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6456 or
      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6457, or you can do in-place concatenation with a
      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6424 object.
      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6424 objects are mutable and have an efficient overallocation mechanism

    • if concatenating

      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6394 objects, extend a
      def bit_length(self):
          s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
          s = s.lstrip('-0b') # remove leading zeros and minus sign
          return len(s)       # len('100101') --> 6
      
      6393 instead

    • for other types, investigate the relevant class documentation

  7. Some sequence types (such as

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6395) only support item sequences that follow specific patterns, and hence don’t support sequence concatenation or repetition

  8. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6463 raises
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    977 when x is not found in s. Not all implementations support passing the additional arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra arguments is roughly equivalent to using
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6465, only without copying any data and with the returned index being relative to the start of the sequence rather than the start of the slice

Immutable Sequence Types¶

The only operation that immutable sequence types generally implement that is not also implemented by mutable sequence types is support for the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6466 built-in

This support allows immutable sequences, such as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6394 instances, to be used as
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6468 keys and stored in
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470 instances

Attempting to hash an immutable sequence that contains unhashable values will result in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
88

Mutable Sequence Types¶

The operations in the following table are defined on mutable sequence types. The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6472 ABC is provided to make it easier to correctly implement these operations on custom sequence types

In the table s is an instance of a mutable sequence type, t is any iterable object and x is an arbitrary object that meets any type and value restrictions imposed by s (for example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424 only accepts integers that meet the value restriction
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6474)

Hoạt động

Kết quả

ghi chú

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6475

item i of s is replaced by x

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6476

slice of s from i to j is replaced by the contents of the iterable t

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6477

same as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6478

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6479

the elements of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6412 are replaced by those of t

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6481

removes the elements of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6412 from the list

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6483

nối x vào cuối dãy (giống như

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6484)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6485

removes all items from s (same as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6486)

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6487

creates a shallow copy of s (same as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6488)

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6489 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6490

extends s with the contents of t (for the most part the same as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6491)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6492

updates s with its contents repeated n times

(6)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6493

inserts x into s at the index given by i (same as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6494)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6495 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6496

retrieves the item at i and also removes it from s

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6497

remove the first item from s where

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6410 is equal to x

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6499

reverses the items of s in place

(4)

Notes

  1. t must have the same length as the slice it is replacing

  2. The optional argument i defaults to

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    941, so that by default the last item is removed and returned

  3. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7301 raises
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    977 when x is not found in s

  4. The

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7303 method modifies the sequence in place for economy of space when reversing a large sequence. To remind users that it operates by side effect, it does not return the reversed sequence

  5. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7304 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7305 are included for consistency with the interfaces of mutable containers that don’t support slicing operations (such as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6468 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6469).
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7305 is not part of the
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6472 ABC, but most concrete mutable sequence classes provide it

    New in version 3. 3.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7304 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7305 methods.

  6. The value n is an integer, or an object implementing

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7312. Zero and negative values of n clear the sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6408 under Common Sequence Operations .

Lists¶

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of similarity will vary by application)

class list([iterable])

Lists may be constructed in several ways

  • Using a pair of square brackets to denote the empty list.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    49

  • Using square brackets, separating items with commas.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7315,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7316

  • Using a list comprehension.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7317

  • Using the type constructor.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7318 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7319

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and returned, similar to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7320. For example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7321 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7322 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7323 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7324. If no argument is given, the constructor creates a new empty list,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49

Many other operations also produce lists, including the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7326 built-in

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional method.

sắp xếp(* , phím=None, reverse=False)

This method sorts the list in place, using only

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74 comparisons between items. Exceptions are not suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially modified state)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7328 accepts two arguments that can only be passed by keyword ( keyword-only arguments ).

key specifies a function of one argument that is used to extract a comparison key from each list element (for example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7329). The key corresponding to each item in the list is calculated once and then used for the entire sorting process. The default value of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 means that list items are sorted directly without calculating a separate key value

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7331 utility is available to convert a 2. x style cmp function to a key function

reverse is a boolean value. If set to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56, then the list elements are sorted as if each comparison were reversed

This method modifies the sequence in place for economy of space when sorting a large sequence. To remind users that it operates by side effect, it does not return the sorted sequence (use

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7326 to explicitly request a new sorted list instance)

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7328 method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by department, then by salary grade)

For sorting examples and a brief sorting tutorial, see Sorting HOW TO .

CPython implementation detail. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration, and raises

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977 if it can detect that the list has been mutated during a sort

Tuples¶

Các bộ dữ liệu là các chuỗi bất biến, thường được sử dụng để lưu trữ các bộ sưu tập dữ liệu không đồng nhất (chẳng hạn như 2 bộ dữ liệu được tạo bởi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7336 tích hợp). Các bộ dữ liệu cũng được sử dụng cho các trường hợp cần một chuỗi dữ liệu đồng nhất bất biến (chẳng hạn như cho phép lưu trữ trong một thể hiện
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6468)

class tuple([iterable])

Tuples may be constructed in a number of ways

  • Sử dụng một cặp dấu ngoặc đơn để biểu thị bộ dữ liệu trống.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    48

  • Using a trailing comma for a singleton tuple.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7340 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7341

  • Separating items with commas.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7342 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7343

  • Using the

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7344 built-in.
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7344 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7346

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7347 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7348 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7349 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7350. If no argument is given, the constructor creates a new empty tuple,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
48

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7352 is a function call with three arguments, while
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7353 is a function call with a 3-tuple as the sole argument

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7354 may be a more appropriate choice than a simple tuple object

Ranges¶

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6395 type represents an immutable sequence of numbers and is commonly used for looping a specific number of times in
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6383 loops

class range(stop)class range(start , stop[ , step])

The arguments to the range constructor must be integers (either built-in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901 or any object that implements the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7312 special method). If the step argument is omitted, it defaults to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55. If the start argument is omitted, it defaults to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42. If step is zero,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977 is raised

Đối với một bước tích cực, nội dung của một phạm vi

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7362 được xác định theo công thức
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7363 trong đó
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7364 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7365

For a negative step, the contents of the range are still determined by the formula

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7363, but the constraints are
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7364 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7368

A range object will be empty if

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7369 does not meet the value constraint. Ranges do support negative indices, but these are interpreted as indexing from the end of the sequence determined by the positive indices

Ranges containing absolute values larger than

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7370 are permitted but some features (such as
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7371) may raise
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
991

Range examples

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually violate that pattern).

start

The value of the start parameter (or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42 if the parameter was not supplied)

stop

The value of the stop parameter

step

The value of the step parameter (or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55 if the parameter was not supplied)

The advantage of the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6395 type over a regular
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6393 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6394 is that a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6395 object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7379,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7380 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7381 values, calculating individual items and subranges as needed)

Range objects implement the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6396 ABC, and provide features such as containment tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range ).

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8

Testing range objects for equality with

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
79 compares them as sequences. That is, two range objects are considered equal if they represent the same sequence of values. (Note that two range objects that compare equal might have different
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7379,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7380 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7381 attributes, for example
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7388 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7389. )

Changed in version 3. 2. Implement the Sequence ABC. Support slicing and negative indices. Test

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901 objects for membership in constant time instead of iterating through all items.

Changed in version 3. 3. Define ‘==’ and ‘. =’ to compare range objects based on the sequence of values they define (instead of comparing based on object identity).

New in version 3. 3. The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7379,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7380 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7381 attributes.

See also

  • The linspace recipe shows how to implement a lazy version of range suitable for floating point applications

Text Sequence Type — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6422¶

Textual data in Python is handled with

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6422 objects, or strings. Strings are immutable sequences of Unicode code points. String literals are written in a variety of ways.

  • Single quotes.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7396

  • Double quotes.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7397

  • Triple quoted.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7398,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7399

Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal

String literals that are part of a single expression and have only whitespace between them will be implicitly converted to a single string literal. That is,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7400

See String and Bytes literals for more about the various forms of string literal, including supported escape sequences, and the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7362 (“raw”) prefix that disables most escape sequence processing.

Các chuỗi cũng có thể được tạo từ các đối tượng khác bằng cách sử dụng hàm tạo

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6422

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string s,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7403

There is also no mutable string type, but

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6453 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6454 can be used to efficiently construct strings from multiple fragments

Changed in version 3. 3. For backwards compatibility with the Python 2 series, the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7406 prefix is once again permitted on string literals. It has no effect on the meaning of string literals and cannot be combined with the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7362 prefix.

class str(object='')class str(object=b'' , encoding='utf-8' , errors='strict')

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
33 depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7409 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7410, which is the “informal” or nicely printable string representation of object. For string objects, this is the string itself. If object does not have a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7411 method, then
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
33 falls back to returning
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7413

If at least one of encoding or errors is given, object should be a bytes-like object (e. g.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424). In this case, if object is a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 (or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424) object, then
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7418 is equivalent to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7419. Otherwise, the bytes object underlying the buffer object is obtained before calling
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7420. See Binary Sequence Types — bytes, bytearray, memoryview and Buffer Protocol for information on buffer objects.

Passing a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 object to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
33 without the encoding or errors arguments falls under the first case of returning the informal string representation (see also the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7423 command-line option to Python). For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9

For more information on the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6422 class and its methods, see Text Sequence Type — str and the String Methods section below. To output formatted strings, see the Formatted string literals and Format String Syntax sections. Ngoài ra, hãy xem phần Dịch vụ xử lý văn bản .

String Methods¶

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7425, Format String Syntax and Custom String Formatting ) and the other based on C
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7426 style formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle ( printf-style String Formatting ).

The Text Processing Services section of the standard library covers a number of other modules that provide various text related utilities (including regular expression support in the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7427 module).

str. capitalize()

Return a copy of the string with its first character capitalized and the rest lowercased

Changed in version 3. 8. The first character is now put into titlecase rather than uppercase. Điều này có nghĩa là các ký tự như chữ ghép sẽ chỉ viết hoa chữ cái đầu tiên, thay vì ký tự đầy đủ.

str. casefold()

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in a string. For example, the German lowercase letter

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7428 is equivalent to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7429. Since it is already lowercase,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7430 would do nothing to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7428;
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7432 converts it to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7429

The casefolding algorithm is described in section 3. 13 of the Unicode Standard

New in version 3. 3

str. center(width[ , fillchar])

Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6413

str. count(sub[ , start[ , end]])

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

If sub is empty, returns the number of empty strings between characters which is the length of the string plus one

str. encode(encoding='utf-8' , errors='strict')

Return an encoded version of the string as a bytes object. Default encoding is

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7435. errors may be given to set a different error handling scheme. The default for errors is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7436, meaning that encoding errors raise a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7437. Other possible values are
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7438,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7439,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7440,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7441 and any other name registered via
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7442, see section Error Handlers . For a list of possible encodings, see section Standard Encodings .

By default, the errors argument is not checked for best performances, but only used at the first encoding error. Enable the Python Development Mode , or use a debug build to check errors.

Đã thay đổi trong phiên bản 3. 1. Support for keyword arguments added.

Changed in version 3. 9. The errors is now checked in development mode and in debug mode .

str. endswith(suffix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string ends with the specified suffix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. Với đầu cuối tùy chọn, dừng so sánh tại vị trí đó

str. expandtabs(tabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string is examined character by character. Nếu ký tự là một tab (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7445), một hoặc nhiều ký tự khoảng trắng sẽ được chèn vào kết quả cho đến khi cột hiện tại bằng với vị trí tab tiếp theo. (The tab character itself is not copied. ) If the character is a newline (
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7446) or return (
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7447), it is copied and the current column is reset to zero. Any other character is copied unchanged and the current column is incremented by one regardless of how the character is represented when printed

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
90

str. find(sub[ , start[ , end]])

Return the lowest index in the string where substring sub is found within the slice

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7448. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
941 if sub is not found

Note

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7450 method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
98 operator

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
91

str. format(*args , **kwargs)

Thực hiện thao tác định dạng chuỗi. The string on which this method is called can contain literal text or replacement fields delimited by braces

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
50. Each replacement field contains either the numeric index of a positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced with the string value of the corresponding argument

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
92

See Format String Syntax for a description of the various formatting options that can be specified in format strings.

Note

When formatting a number (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
902,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
903,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
908 and subclasses) with the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6351 type (ex.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7458), the function temporarily sets the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7459 locale to the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7460 locale to decode
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7461 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7462 fields of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7463 if they are non-ASCII or longer than 1 byte, and the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7460 locale is different than the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7459 locale. This temporary change affects other threads

Changed in version 3. 7. When formatting a number with the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6351 type, the function sets temporarily the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7459 locale to the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7460 locale in some cases.

str. format_map(mapping)

Similar to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7469, except that
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7470 is used directly and not copied to a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6468. This is useful if for example
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7470 is a dict subclass

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
93

New in version 3. 2

str. index(sub[ , start[ , end]])

Like

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7450, but raise
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977 when the substring is not found

str. isalnum()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are alphanumeric and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. A character
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7477 is alphanumeric if one of the following returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7479,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7480,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7481, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7482

str. isalpha()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are alphabetic and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i. e. , those with general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note that this is different from the “Alphabetic” property defined in the Unicode Standard

str. isascii()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string is empty or all characters in the string are ASCII,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. ASCII characters have code points in the range U+0000-U+007F

New in version 3. 7

str. isdecimal()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are decimal characters and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Decimal characters are those that can be used to form numbers in base 10, e. g. U+0660, ARABIC-INDIC DIGIT ZERO. Chính thức, một ký tự thập phân là một ký tự trong Danh mục chung Unicode “Nd”

str. isdigit()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are digits and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Digits include decimal characters and digits that need special handling, such as the compatibility superscript digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal

str. isidentifier()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the string is a valid identifier according to the language definition, section Identifiers and keywords .

Call

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7492 to test whether string
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7493 is a reserved identifier, such as
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7494 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7495

Example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
94

str. islower()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all cased characters 4 in the string are lowercase and there is at least one cased character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

str. isnumeric()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are numeric characters, and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e. g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric

str. isprintable()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all characters in the string are printable or the string is empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Các ký tự không in được là những ký tự được xác định trong cơ sở dữ liệu ký tự Unicode là “Khác” hoặc “Dấu phân cách”, ngoại trừ khoảng trống ASCII (0x20) được coi là có thể in được. (Note that printable characters in this context are those which should not be escaped when
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
32 is invoked on a string. Nó không liên quan đến việc xử lý các chuỗi được ghi cho
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7703 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7704. )

str. không gian()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if there are only whitespace characters in the string and there is at least one character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

A character is whitespace if in the Unicode character database (see

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7707), either its general category is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7708 (“Separator, space”), or its bidirectional class is one of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7709,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7710, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7711

str. tiêu đề()

Trả về

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 nếu chuỗi là chuỗi có tiêu đề và có ít nhất một ký tự, ví dụ: ký tự hoa chỉ có thể theo sau ký tự không có ký tự và ký tự chữ thường chỉ theo sau ký tự có ký tự. Trả lại
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 nếu không

str. isupper()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all cased characters 4 in the string are uppercase and there is at least one cased character,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
95

str. join(iterable)

Return a string which is the concatenation of the strings in iterable. A

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
88 will be raised if there are any non-string values in iterable, including
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 objects. The separator between elements is the string providing this method

str. ljust(width[ , fillchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6413

str. lower()

Return a copy of the string with all the cased characters 4 converted to lowercase

The lowercasing algorithm used is described in section 3. 13 của Tiêu chuẩn Unicode

str. lstrip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
96

See

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7720 for a method that will remove a single prefix string rather than all of a set of characters. For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
97

static str. maketrans(x[ , y[ , z]])

This static method returns a translation table usable for

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7721

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings of length 1) to Unicode ordinals, strings (of arbitrary lengths) or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31. Character keys will then be converted to ordinals

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose characters will be mapped to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 in the result

str. partition(sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings

str. removeprefix(prefix , /)

If the string starts with the prefix string, return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7724. Otherwise, return a copy of the original string

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
98

New in version 3. 9

str. removesuffix(suffix , /)

If the string ends with the suffix string and that suffix is not empty, return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7725. Otherwise, return a copy of the original string

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
99

New in version 3. 9

str. replace(old , new[ , count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

str. rfind(sub[ , start[ , end]])

Return the highest index in the string where substring sub is found, such that sub is contained within

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7448. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
941 on failure

str. rindex(sub[ , start[ , end]])

Like

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7728 but raises
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977 when the substring sub is not found

str. rjust(width[ , fillchar])

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6413

str. rpartition(sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty strings, followed by the string itself

str. rsplit(sep=None , maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, any whitespace string is a separator. Except for splitting from the right,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7732 behaves like
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7733 which is described in detail below

str. rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
630

See

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7735 for a method that will remove a single suffix string rather than all of a set of characters. For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
631

str. split(sep=None , maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done (thus, the list will have at most

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7736 elements). If maxsplit is not specified or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
941, then there is no limit on the number of splits (all possible splits are made)

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7738 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7739). The sep argument may consist of multiple characters (for example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7740 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7741). Splitting an empty string with a specified separator returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7742

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
632

Nếu sep không được chỉ định hoặc là

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, một thuật toán tách khác sẽ được áp dụng. các khoảng trắng liên tiếp được coi là một dấu phân cách duy nhất và kết quả sẽ không chứa chuỗi trống ở đầu hoặc cuối nếu chuỗi có khoảng trắng ở đầu hoặc cuối. Do đó, việc tách một chuỗi rỗng hoặc một chuỗi chỉ bao gồm khoảng trắng bằng dấu phân cách
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 sẽ trả về
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
633

str. đường phân chia(keepends=Sai)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal newlines .

Representation

Description

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7446

Line Feed

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7447

Carriage Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7748

Carriage Return + Line Feed

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7749 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7750

Line Tabulation

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7751 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7752

Form Feed

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7753

File Separator

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7754

Group Separator

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7755

Record Separator

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7756

Next Line (C1 Control Code)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7757

Line Separator

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7758

Paragraph Separator

Changed in version 3. 2.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7749 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7751 added to list of line boundaries.

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
634

Unlike

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7733 when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
635

For comparison,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7762 gives

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
636

str. startswith(prefix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if string starts with the prefix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test string beginning at that position. Với phần cuối tùy chọn, dừng so sánh chuỗi tại vị trí đó

str. strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
637

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed from the leading end until reaching a string character that is not contained in the set of characters in chars. A similar action takes place on the trailing end. For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
638

str. swapcase()

Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not necessarily true that

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7766

str. title()

Return a titlecased version of the string where words start with an uppercase character and the remaining characters are lowercase

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
639

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
640

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7767 function does not have this problem, as it splits words on spaces only

Alternatively, a workaround for apostrophes can be constructed using regular expressions

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
641

str. translate(table)

Return a copy of the string in which each character has been mapped through the given translation table. The table must be an object that implements indexing via

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7768, typically a mapping or sequence . When indexed by a Unicode ordinal (an integer), the table object can do any of the following. return a Unicode ordinal or a string, to map the character to one or more other characters; return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, to delete the character from the return string; or raise a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7770 exception, to map the character to itself.

You can use

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7771 to create a translation map from character-to-character mappings in different formats

See also the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7772 module for a more flexible approach to custom character mappings

str. upper()

Return a copy of the string with all the cased characters 4 converted to uppercase. Note that

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7773 might be
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 if
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7493 contains uncased characters or if the Unicode category of the resulting character(s) is not “Lu” (Letter, uppercase), but e. g. “Lt” (Letter, titlecase)

The uppercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. zfill(width)

Return a copy of the string left filled with ASCII

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7776 digits to make a string of length width. A leading sign prefix (
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7777/
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7778) is handled by inserting the padding after the sign character rather than before. The original string is returned if width is less than or equal to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6413

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
642

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 7426-style String Formatting¶

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals , the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7425 interface, or template strings may help avoid these errors. Each of these alternatives provides their own trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation. toán tử

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7782 (mô-đun). This is also known as the string formatting or interpolation operator. Given
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7783 (where format is a string),
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7782 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7785 in the C language

If format requires a single argument, values may be a single non-tuple object. 5 Mặt khác, các giá trị phải là một bộ có số mục chính xác được chỉ định bởi chuỗi định dạng hoặc một đối tượng ánh xạ đơn lẻ (ví dụ: từ điển)

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7786 character, which marks the start of the specifier

  2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example,

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7787)

  3. Conversion flags (optional), which affect the result of some conversion types

  4. Minimum field width (optional). If specified as an

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7788 (asterisk), the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision (optional), given as a

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7789 (dot) followed by the precision. If specified as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7788 (an asterisk), the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier (optional)

  7. Conversion type

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a parenthesised mapping key into that dictionary inserted immediately after the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7786 character. The mapping key selects the value to be formatted from the mapping. For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
643

In this case no

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6400 specifiers may occur in a format (since they require a sequential parameter list)

The conversion flag characters are

Flag

Meaning

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7793

The value conversion will use the “alternate form” (where defined below)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7776

The conversion will be zero padded for numeric values

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7778

The converted value is left adjusted (overrides the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7776 conversion if both are given)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7797

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7777

A sign character (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7777 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7778) will precede the conversion (overrides a “space” flag)

A length modifier (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8201,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8202, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8203) may be present, but is ignored as it is not necessary for Python – so e. g.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8204 is identical to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8205

The conversion types are

Conversion

Meaning

ghi chú

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8206

Signed integer decimal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8207

Signed integer decimal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8208

Signed octal value

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8209

Obsolete type – it is identical to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8206

(6)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8211

Signed hexadecimal (lowercase)

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8212

Signed hexadecimal (uppercase)

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8213

Floating point exponential format (lowercase)

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8214

Floating point exponential format (uppercase)

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8215

Floating point decimal format

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8216

Floating point decimal format

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8217

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8218

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8219

Single character (accepts integer or single character string)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8220

String (converts any Python object using

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
32)

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8222

String (converts any Python object using

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
33)

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8224

String (converts any Python object using

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8225)

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7786

No argument is converted, results in a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7786 character in the result

Notes

  1. The alternate form causes a leading octal specifier (

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8228) to be inserted before the first digit

  2. Dạng thay thế làm cho một

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8229 hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8230 đứng đầu (tùy thuộc vào việc sử dụng định dạng
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8211 hay
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8212) trước chữ số đầu tiên

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8233, the output is truncated to
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8233 characters

  6. See PEP 237

Since Python strings have an explicit length,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8235 conversions do not assume that
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8236 is the end of the string

Changed in version 3. 1.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8237 conversions for numbers whose absolute value is over 1e50 are no longer replaced by
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8238 conversions.

Binary Sequence Types — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6423, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6424, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 8241¶

The core built-in types for manipulating binary data are

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424. They are supported by
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8241 which uses the buffer protocol to access the memory of other binary objects without needing to make a copy.

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8245 module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision floating values

Bytes Objects¶

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely related to string objects in a variety of other ways

class bytes([source[ , encoding[ , errors]]])

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8246 prefix is added

  • Single quotes.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8247

  • Double quotes.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8248

  • Triple quoted.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8249,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8250

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary values over 127 must be entered into bytes literals using the appropriate escape sequence

As with string literals, bytes literals may also use a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7362 prefix to disable processing of escape sequences. See String and Bytes literals for more about the various forms of bytes literal, including supported escape sequences.

Mặc dù các ký tự byte và biểu diễn dựa trên văn bản ASCII, nhưng các đối tượng byte thực sự hoạt động giống như các chuỗi số nguyên bất biến, với mỗi giá trị trong chuỗi bị hạn chế sao cho

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8252 (cố gắng vi phạm hạn chế này sẽ kích hoạt
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977). This is done deliberately to emphasise that while many binary formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that are not ASCII compatible will usually lead to data corruption)

In addition to the literal forms, bytes objects can be created in a number of other ways

  • A zero-filled bytes object of a specified length.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8254

  • From an iterable of integers.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8255

  • Copying existing binary data via the buffer protocol.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8256

Cũng xem byte tích hợp.

Vì 2 chữ số thập lục phân tương ứng chính xác với một byte đơn, số thập lục phân là định dạng thường được sử dụng để mô tả dữ liệu nhị phân. Theo đó, kiểu bytes có thêm một phương thức lớp để đọc dữ liệu ở định dạng đó

phương pháp phân lớp từ hex(chuỗi)

Phương thức lớp

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 này trả về một đối tượng byte, giải mã đối tượng chuỗi đã cho. Chuỗi phải chứa hai chữ số thập lục phân trên mỗi byte, bỏ qua khoảng trắng ASCII

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
644

Đã thay đổi trong phiên bản 3. 7. ______18258 hiện bỏ qua tất cả khoảng trắng ASCII trong chuỗi, không chỉ khoảng trắng.

Hàm chuyển đổi ngược tồn tại để chuyển đổi một đối tượng byte thành biểu diễn thập lục phân của nó

hex([sep[, bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the instance

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
645

If you want to make the hex string easier to read, you can specify a single character separator sep parameter to include in the output. By default, this separator will be included between each byte. Tham số bytes_per_sep tùy chọn thứ hai kiểm soát khoảng cách. Positive values calculate the separator position from the right, negative values from the left

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
646

New in version 3. 5

Changed in version 3. 8.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8259 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8260 will be an integer, while
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8261 will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string of length 1)

The representation of bytes objects uses the literal format (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8262) since it is often more useful than e. g.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8263. You can always convert a bytes object into a list of integers using
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8264

Bytearray Objects¶

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424 objects are a mutable counterpart to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 objects

class bytearray([source[ , encoding[ , errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor

  • Creating an empty instance.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8267

  • Creating a zero-filled instance with a given length.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8268

  • From an iterable of integers.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8269

  • Copying existing binary data via the buffer protocol.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8270

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common bytes and bytearray operations described in Bytes and Bytearray Operations .

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that format

phương pháp phân lớp từ hex(chuỗi)

This

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424 class method returns bytearray object, decoding the given string object. Chuỗi phải chứa hai chữ số thập lục phân trên mỗi byte, bỏ qua khoảng trắng ASCII

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
647

Changed in version 3. 7.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8272 now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation

hex([sep[, bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the instance

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
648

New in version 3. 5

Changed in version 3. 8. Similar to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8259,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8274 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8260 will be an integer, while
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8261 will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8277) since it is often more useful than e. g.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8278. You can always convert a bytearray object into a list of integers using
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8264

Bytes and Bytearray Operations¶

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands of the same type, but with any bytes-like object . Due to this flexibility, they can be freely mixed in operations without causing errors. However, the return type of the result may depend on the order of operands.

Note

The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings don’t accept bytes as their arguments. For example, you have to write

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
649

and

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
730

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided when working with arbitrary binary data. These restrictions are covered below

Note

Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may lead to data corruption

The following methods on bytes and bytearray objects can be used with arbitrary binary data

bytes. count(sub[ , start[ , end]])bytearray. count(sub[ , start[ , end]])

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object plus one

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. removeprefix(prefix , /)bytearray. removeprefix(prefix , /)

If the binary data starts with the prefix string, return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8280. Otherwise, return a copy of the original binary data

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
731

The prefix may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

bytes. removesuffix(suffix , /)bytearray. removesuffix(suffix , /)

If the binary data ends with the suffix string and that suffix is not empty, return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8281. Otherwise, return a copy of the original binary data

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
732

The suffix may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

New in version 3. 9

byte. decode(encoding='utf-8' , errors='strict')bytearray. decode(encoding='utf-8' , errors='strict')

Return a string decoded from the given bytes. Default encoding is

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7435. errors may be given to set a different error handling scheme. The default for errors is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7436, meaning that encoding errors raise a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7437. Other possible values are
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7438,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7439 and any other name registered via
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7442, see section Error Handlers . For a list of possible encodings, see section Standard Encodings .

By default, the errors argument is not checked for best performances, but only used at the first decoding error. Bật Chế độ phát triển Python hoặc sử dụng bản dựng gỡ lỗi để kiểm tra lỗi.

Note

Truyền đối số mã hóa cho

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6422 cho phép giải mã trực tiếp bất kỳ đối tượng dạng byte nào mà không cần tạo đối tượng byte tạm thời hoặc đối tượng bytearray.

Đã thay đổi trong phiên bản 3. 1. Added support for keyword arguments.

Changed in version 3. 9. The errors is now checked in development mode and in debug mode .

bytes. endswith(suffix[ , start[ , end]])bytearray. endswith(suffix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the binary data ends with the specified suffix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The suffix(es) to search for may be any bytes-like object .

bytes. find(sub[ , start[ , end]])bytearray. find(sub[ , start[ , end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7448. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
941 if sub is not found

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7450 method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
98 operator

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
733

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. index(sub[ , start[ , end]])bytearray. index(sub[ , start[ , end]])

Like

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7450, but raise
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977 when the subsequence is not found

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join(iterable)bytearray. join(iterable)

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
88 will be raised if there are any values in iterable that are not bytes-like objects , including
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6422 objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes. maketrans(from , to)static bytearray. maketrans(from , to)

This static method returns a translation table usable for

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8299 that will map each character in from into the character at the same position in to; from and to must both be bytes-like objects and have the same length.

New in version 3. 1

bytes. partition(sep)bytearray. partition(sep)

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects

The separator to search for may be any bytes-like object .

bytes. replace(old , new[ , count])bytearray. replace(old , new[ , count])

Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

The subsequence to search for and its replacement may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rfind(sub[ , start[ , end]])bytearray. rfind(sub[ , start[ , end]])

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7448. Optional arguments start and end are interpreted as in slice notation. Return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
941 on failure

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rindex(sub[ , start[ , end]])bytearray. rindex(sub[ , start[ , end]])

Like

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7728 but raises
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977 when the subsequence sub is not found

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rpartition(sep)bytearray. rpartition(sep)

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence

The separator to search for may be any bytes-like object .

bytes. startswith(prefix[ , start[ , end]])bytearray. startswith(prefix[ , start[ , end]])

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the binary data starts with the specified prefix, otherwise return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. prefix can also be a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The prefix(es) to search for may be any bytes-like object .

bytes. translate(table , / , delete=b'')bytearray. translate(table , / , delete=b'')

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes object of length 256

You can use the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9006 method to create a translation table

Set the table argument to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 for translations that only delete characters

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
734

Changed in version 3. 6. delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Lưu ý rằng tất cả các phương thức bytearray trong phần này không hoạt động tại chỗ mà thay vào đó tạo ra các đối tượng mới

bytes. center(width[ , fillbyte])bytearray. center(width[ , fillbyte])

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte (default is an ASCII space). For

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. ljust(chiều rộng[ , . fillbyte])bytearray.ljust(width[ , fillbyte])

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte (default is an ASCII space). For

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. lstrip([chars])bytearray. lstrip([chars])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
735

The binary sequence of byte values to remove may be any bytes-like object . See

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9013 for a method that will remove a single prefix string rather than all of a set of characters. For example.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
736

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rjust(width[ , fillbyte])bytearray. rjust(width[ , fillbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte (default is an ASCII space). For

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6413

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rsplit(sep=None , maxsplit=- 1)bytearray. rsplit(sep=None , maxsplit=- 1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, any subsequence consisting solely of ASCII whitespace is a separator. Except for splitting from the right,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7732 behaves like
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7733 which is described in detail below

bytes. rstrip([chars])bytearray. rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
737

The binary sequence of byte values to remove may be any bytes-like object . See

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9020 for a method that will remove a single suffix string rather than all of a set of characters. For example.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
738

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. split(sep=None , maxsplit=- 1)bytearray. split(sep=None , maxsplit=- 1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. Nếu maxsplit được đưa ra và không âm, thì tối đa việc tách maxsplit được thực hiện (do đó, danh sách sẽ có tối đa

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7736 phần tử). If maxsplit is not specified or is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
941, then there is no limit on the number of splits (all possible splits are made)

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences (for example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9023 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9024). The sep argument may consist of a multibyte sequence (for example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9025 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9026). Splitting an empty sequence with a specified separator returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9027 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9028 depending on the type of object being split. The sep argument may be any bytes-like object .

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
739

If sep is not specified or is

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, a different splitting algorithm is applied. runs of consecutive ASCII whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consisting solely of ASCII whitespace without a specified separator returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
49

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
740

bytes. strip([chars])bytearray. strip([chars])

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
741

The binary sequence of byte values to remove may be any bytes-like object .

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place, and instead produce new objects

bytes. capitalize()bytearray. capitalize()

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized and the rest lowercased. Non-ASCII byte values are passed through unchanged

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. expandtabs(tabsize=8)bytearray. expandtabs(tabsize=8)

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces, depending on the current column and the given tab size. Tab positions occur every tabsize bytes (default is 8, giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to zero and the sequence is examined byte by byte. If the byte is an ASCII tab character (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9032), one or more space characters are inserted in the result until the current column is equal to the next tab position. (The tab character itself is not copied. ) If the current byte is an ASCII newline (
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9033) or carriage return (
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9034), it is copied and the current column is reset to zero. Any other byte value is copied unchanged and the current column is incremented by one regardless of how the byte value is represented when printed

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
742

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. isalnum()bytearray. isalnum()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9037. ASCII decimal digits are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9038

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
743

bytes. isalpha()bytearray. isalpha()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all bytes in the sequence are alphabetic ASCII characters and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. Alphabetic ASCII characters are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9037

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
744

bytes. isascii()bytearray. isascii()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the sequence is empty or all bytes in the sequence are ASCII,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. ASCII bytes are in the range 0-0x7F

New in version 3. 7

bytes. isdigit()bytearray. isdigit()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all bytes in the sequence are ASCII decimal digits and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. ASCII decimal digits are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9038

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
745

bytes. islower()bytearray. islower()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
746

Lowercase ASCII characters are those byte values in the sequence

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9050

bytes. isspace()bytearray. isspace()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if all bytes in the sequence are ASCII whitespace and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. ASCII whitespace characters are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9053 (space, tab, newline, carriage return, vertical tab, form feed)

bytes. istitle()bytearray. istitle()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the sequence is ASCII titlecase and the sequence is not empty,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise. See
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9056 for more details on the definition of “titlecase”

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
747

bytes. isupper()bytearray. isupper()

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII characters,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 otherwise

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
748

Lowercase ASCII characters are those byte values in the sequence

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9050

bytes. lower()bytearray. lower()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase counterpart

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
749

Lowercase ASCII characters are those byte values in the sequence

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9050

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. splitlines(keepends=False)bytearray. splitlines(keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and true.

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
770

Unlike

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7733 when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
771

bytes. swapcase()bytearray. swapcase()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart and vice-versa

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
772

Lowercase ASCII characters are those byte values in the sequence

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9050

Unlike

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9066, it is always the case that
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9067 for the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary Unicode code points

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. title()bytearray. title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the remaining characters are lowercase. Uncased byte values are left unmodified

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
773

Lowercase ASCII characters are those byte values in the sequence

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9050. All other byte values are uncased

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
774

Có thể xây dựng giải pháp thay thế cho dấu nháy đơn bằng cách sử dụng biểu thức chính quy

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
775

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. upper()bytearray. upper()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
776

Lowercase ASCII characters are those byte values in the sequence

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9049. Uppercase ASCII characters are those byte values in the sequence
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9050

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. zfill(width)bytearray. zfill(width)

Trả về một bản sao của chuỗi còn lại chứa đầy các chữ số ASCII

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9072 để tạo một chuỗi có chiều dài chiều rộng. A leading sign prefix (
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9073/
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9074) is handled by inserting the padding after the sign character rather than before. For
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 objects, the original sequence is returned if width is less than or equal to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
9076

For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
777

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 7426-style Bytes Formatting¶

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary, wrap it in a tuple

Bytes objects (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423/
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424) have one unique built-in operation. the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7782 operator (modulo). This is also known as the bytes formatting or interpolation operator. Given
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7783 (where format is a bytes object),
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7782 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7785 in the C language

If format requires a single argument, values may be a single non-tuple object. 5 Otherwise, values must be a tuple with exactly the number of items specified by the format bytes object, or a single mapping object (for example, a dictionary)

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7786 character, which marks the start of the specifier

  2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example,

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7787)

  3. Conversion flags (optional), which affect the result of some conversion types

  4. Minimum field width (optional). If specified as an

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7788 (asterisk), the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision (optional), given as a

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7789 (dot) followed by the precision. If specified as
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    7788 (an asterisk), the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier (optional)

  7. Conversion type

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include a parenthesised mapping key into that dictionary inserted immediately after the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7786 character. The mapping key selects the value to be formatted from the mapping. For example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
778

In this case no

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6400 specifiers may occur in a format (since they require a sequential parameter list)

The conversion flag characters are

Flag

Meaning

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7793

The value conversion will use the “alternate form” (where defined below)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7776

The conversion will be zero padded for numeric values

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7778

The converted value is left adjusted (overrides the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7776 conversion if both are given)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7797

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7777

A sign character (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7777 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7778) will precede the conversion (overrides a “space” flag)

A length modifier (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8201,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8202, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8203) may be present, but is ignored as it is not necessary for Python – so e. g.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8204 is identical to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8205

The conversion types are

Conversion

Meaning

ghi chú

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8206

Signed integer decimal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8207

Signed integer decimal

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8208

Signed octal value

(1)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8209

Obsolete type – it is identical to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8206

(số 8)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8211

Signed hexadecimal (lowercase)

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8212

Signed hexadecimal (uppercase)

(2)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8213

Floating point exponential format (lowercase)

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8214

Floating point exponential format (uppercase)

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8215

Floating point decimal format

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8216

Floating point decimal format

(3)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8217

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8218

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8219

Single byte (accepts integer or single byte objects)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
018

Bytes (any object that follows the buffer protocol or has

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
019).

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8222

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8222 is an alias for
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
018 and should only be used for Python2/3 code bases

(6)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8224

Bytes (converts any Python object using

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
024)

(5)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8220

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8220 is an alias for
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8224 and should only be used for Python2/3 code bases

(7)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7786

No argument is converted, results in a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7786 character in the result

Notes

  1. The alternate form causes a leading octal specifier (

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8228) to be inserted before the first digit

  2. Dạng thay thế làm cho một

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8229 hoặc
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8230 đứng đầu (tùy thuộc vào việc sử dụng định dạng
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8211 hay
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8212) trước chữ số đầu tiên

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8233, the output is truncated to
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8233 characters

  6. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    037 is deprecated, but will not be removed during the 3. x series

  7. def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    038 is deprecated, but will not be removed during the 3. x series

  8. See PEP 237

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

See also

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3. 5

Memory Views¶

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8241 objects allow Python code to access the internal data of an object that supports the buffer protocol without copying.

class memoryview(object)

Create a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8241 that references object. object must support the buffer protocol. Built-in objects that support the buffer protocol include
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424

A

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8241 has the notion of an element, which is the atomic memory unit handled by the originating object. For many simple types such as
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424, an element is a single byte, but other types such as
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
046 may have bigger elements

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
047 is equal to the length of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
048. If
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
049, the length is 1. If
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
050, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length of the nested list representation of the view. The
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
051 attribute will give you the number of bytes in a single element

A

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8241 supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
779

If

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
053 is one of the native format specifiers from the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
054 module, indexing with an integer or a tuple of integers is also supported and returns a single element with the correct type. Các lần xem bộ nhớ một chiều có thể được lập chỉ mục bằng một số nguyên hoặc một bộ một số nguyên. Multi-dimensional memoryviews can be indexed with tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed with the empty tuple

Here is an example with a non-byte format

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
820

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is not allowed

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
821

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash is defined as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
055

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
822

Changed in version 3. 3. Giờ đây, các lần xem bộ nhớ một chiều có thể được cắt lát. One-dimensional memoryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3. 4. memoryview is now registered automatically with

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6396

Changed in version 3. 5. memoryviews can now be indexed with tuple of integers.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8241 has several methods

__eq__(exporter)

A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding values are equal when the operands’ respective format codes are interpreted using

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
054 syntax

For the subset of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
054 format strings currently supported by
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
060,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
061 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
062 are equal if
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
063

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
823

If either format string is not supported by the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
054 module, then the objects will always compare as unequal (even if the format strings and buffer contents are identical)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
824

Note that, as with floating point numbers,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
065 does not imply
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
066 for memoryview objects

Changed in version 3. 3. Previous versions compared the raw memory disregarding the item format and the logical array structure.

tobytes(order='C')

Return the data in the buffer as a bytestring. This is equivalent to calling the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 constructor on the memoryview

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
825

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to bytes.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
068 supports all format strings, including those that are not in
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
054 module syntax

New in version 3. 8. order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory. In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to C first. order=None is the same as order=’C’.

hex([sep[, bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the buffer

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
826

New in version 3. 5

Changed in version 3. 8. Similar to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
8259,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
071 now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist()

Return the data in the buffer as a list of elements

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
827

Changed in version 3. 3.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
060 now supports all single character native formats in
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
054 module syntax as well as multi-dimensional representations.

toreadonly()

Return a readonly version of the memoryview object. The original memoryview object is unchanged

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
828

New in version 3. 8

release()

Giải phóng bộ đệm cơ bản được hiển thị bởi đối tượng memoryview. Many objects take special actions when a view is held on them (for example, a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6424 would temporarily forbid resizing); therefore, calling release() is handy to remove these restrictions (and free any dangling resources) as soon as possible

After this method has been called, any further operation on the view raises a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977 (except
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
076 itself which can be called multiple times)

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
829

The context management protocol can be used for a similar effect, using the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statement

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
900

New in version 3. 2

cast(format[ , shape])

Cast a memoryview to a new format or shape. shape defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
078, which means that the result view will be one-dimensional. The return value is a new memoryview, but the buffer itself is not copied. Supported casts are 1D -> C- contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
054 syntax. One of the formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the original length

Cast 1D/long to 1D/unsigned bytes

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901

Cast 1D/unsigned bytes to 1D/char

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
902

Cast 1D/bytes to 3D/ints to 1D/signed char

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
903

Cast 1D/unsigned long to 2D/unsigned long

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
904

New in version 3. 3

Changed in version 3. 5. The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available

obj

The underlying object of the memoryview

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
905

New in version 3. 3

nbytes

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
080. This is the amount of space in bytes that the array would use in a contiguous representation. It is not necessarily equal to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
081

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
906

Multi-dimensional arrays

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
907

New in version 3. 3

readonly

A bool indicating whether the memory is read only

format

A string containing the format (in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
054 module style) for each element in the view. A memoryview can be created from exporters with arbitrary format strings, but some methods (e. g.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
060) are restricted to native single element formats

Changed in version 3. 3. format

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
084 is now handled according to the struct module syntax. This means that
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
085.

itemsize

The size in bytes of each element of the memoryview

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
908

ndim

An integer indicating how many dimensions of a multi-dimensional array the memory represents

shape

A tuple of integers the length of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
086 giving the shape of the memory as an N-dimensional array

Changed in version 3. 3. An empty tuple instead of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 when ndim = 0.

strides

A tuple of integers the length of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
086 giving the size in bytes to access each element for each dimension of the array

Changed in version 3. 3. An empty tuple instead of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 when ndim = 0.

suboffsets

Used internally for PIL-style arrays. The value is informational only

c_contiguous

A bool indicating whether the memory is C- contiguous .

New in version 3. 3

f_contiguous

A bool indicating whether the memory is Fortran contiguous .

New in version 3. 3

contiguous

A bool indicating whether the memory is contiguous .

New in version 3. 3

Set Types — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6469, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6470¶

Đối tượng tập hợp là một tập hợp không theo thứ tự các đối tượng có thể băm riêng biệt. Common uses include membership testing, removing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric difference. (For other containers see the built-in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6468,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6393, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6394 classes, and the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
095 module. )

Like other collections, sets support

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
096,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
097, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
098. Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other sequence-like behavior

There are currently two built-in set types,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470. The
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 type is mutable — the contents can be changed using methods like
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
102 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7301. Since it is mutable, it has no hash value and cannot be used as either a dictionary key or as an element of another set. The
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470 type is immutable and hashable — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for example.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
105, in addition to the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 constructor

The constructors for both classes work the same

lớp bộ([có thể lặp lại])class frozenset([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be hashable . To represent sets of sets, the inner sets must be

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470 objects. If iterable is not specified, a new empty set is returned.

Sets can be created by several means

  • Use a comma-separated list of elements within braces.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    105

  • Use a set comprehension.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    109

  • Use the type constructor.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    51,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    111,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    112

Instances of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470 provide the following operations

len(s)

Return the number of elements in set s (cardinality of s)

x in s

Test x for membership in s

x not in s

Test x for non-membership in s

isdisjoint(other)

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if the set has no elements in common with other. Sets are disjoint if and only if their intersection is the empty set

issubset(other)set <= other

Test whether every element in the set is in other

set < other

Test whether the set is a proper subset of other, that is,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
116

issuperset(other)set >= other

Test whether every element in other is in the set

set > other

Test whether the set is a proper superset of other, that is,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
117

union(*others)set . other . .

Return a new set with elements from the set and all others

giao lộ(*các ngã tư khác)set & other & ...

Return a new set with elements common to the set and all others

difference(*others)set - other - .

Return a new set with elements in the set that are not in the others

symmetric_difference(other)set ^ other

Return a new set with elements in either the set or other but not both

copy()

Return a shallow copy of the set

Note, the non-operator versions of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
118,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
119,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
120,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
121,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
122, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
123 methods will accept any iterable as an argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes error-prone constructions like
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
124 in favor of the more readable
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
125

Both

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470 support set to set comparisons. Two sets are equal if and only if every element of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if the first set is a proper superset of the second set (is a superset, but is not equal)

Instances of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 are compared to instances of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470 based on their members. For example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
130 returns
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 and so does
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
132

The subset and equality comparisons do not generalize to a total ordering function. For example, any two nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
134,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
135, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
136

Since sets only define partial ordering (subset relationships), the output of the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
137 method is undefined for lists of sets

Set elements, like dictionary keys, must be hashable .

Binary operations that mix

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 instances with
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470 return the type of the first operand. For example.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
140 returns an instance of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470

The following table lists operations available for

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 that do not apply to immutable instances of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6470

update(*others)set . = other . .

Update the set, adding elements from all others

intersection_update(*others)set &= other & .

Update the set, keeping only elements found in it and all others

difference_update(*others)set -= other . .

Update the set, removing elements found in others

symmetric_difference_update(other)set ^= other

Update the set, keeping only elements found in either set, but not in both

add(elem)

Add element elem to the set

remove(elem)

Remove element elem from the set. Raises

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
144 if elem is not contained in the set

discard(elem)

Remove element elem from the set if it is present

pop()

Remove and return an arbitrary element from the set. Raises

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
144 if the set is empty

clear()

Remove all elements from the set

Note, the non-operator versions of the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
146,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
147,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
148, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
149 methods will accept any iterable as an argument

Note, the elem argument to the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
900,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7301, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
152 methods may be a set. To support searching for an equivalent frozenset, a temporary one is created from elem

Mapping Types — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6468¶

A ánh xạ đối tượng ánh xạ các giá trị có thể băm thành các đối tượng tùy ý. Mappings are mutable objects. There is currently only one standard mapping type, the dictionary. (For other containers see the built-in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6393,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6394 classes, and the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
095 module. )

A dictionary’s keys are almost arbitrary values. Values that are not hashable , that is, values containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Values that compare equal (such as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
159, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56) can be used interchangeably to index the same dictionary entry.

class dict(**kwargs)class dict(mapping , **kwargs)class dict(iterable , **kwargs)

Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword arguments

Dictionaries can be created by several means

  • Use a comma-separated list of

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    161 pairs within braces.
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    162 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    163

  • Use a dict comprehension.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    50,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    165

  • Use the type constructor.

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    166,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    167,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    168

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the positional argument must be an iterable object. Bản thân mỗi mục trong iterable phải là iterable với chính xác hai đối tượng. Đối tượng đầu tiên của mỗi mục trở thành một khóa trong từ điển mới và đối tượng thứ hai là giá trị tương ứng. Nếu một khóa xuất hiện nhiều lần, giá trị cuối cùng của khóa đó sẽ trở thành giá trị tương ứng trong từ điển mới.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from the positional argument. If a key being added is already present, the value from the keyword argument replaces the value from the positional argument

To illustrate, the following examples all return a dictionary equal to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
169

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
909

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers. Otherwise, any valid keys can be used

These are the operations that dictionaries support (and therefore, custom mapping types should support too)

list(d)

Return a list of all the keys used in the dictionary d

len(d)

Return the number of items in the dictionary d

d[key]

Return the item of d with key key. Raises a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
144 if key is not in the map

If a subclass of dict defines a method

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
171 and key is not present, the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
172 operation calls that method with the key key as argument. The
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
172 operation then returns or raises whatever is returned or raised by the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
174 call. No other operations or methods invoke
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
171. If
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
171 is not defined,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
144 is raised.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
171 must be a method; it cannot be an instance variable

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
00

The example above shows part of the implementation of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
179. A different
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
180 method is used by
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
181

d[key] = value

Set

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
172 to value

del d[key]

Remove

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
172 from d. Raises a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
144 if key is not in the map

key in d

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if d has a key key, else
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38

key not in d

Equivalent to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
187

iter(d)

Return an iterator over the keys of the dictionary. Đây là lối tắt cho

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
188

clear()

Remove all items from the dictionary

copy()

Return a shallow copy of the dictionary

classmethod fromkeys(iterable[ , value])

Create a new dictionary with keys from iterable and values set to value

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
189 is a class method that returns a new dictionary. value defaults to
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31. All of the values refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as an empty list. To get distinct values, use a dict comprehension instead.

get(key[ , default])

Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31, so that this method never raises a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
144

items()

Return a new view of the dictionary’s items (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
193 pairs). See the documentation of view objects .

keys()

Return a new view of the dictionary’s keys. See the documentation of view objects .

pop(key[ , default])

If key is in the dictionary, remove it and return its value, else return default. If default is not given and key is not in the dictionary, a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
144 is raised

popitem()

Remove and return a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
193 pair from the dictionary. Pairs are returned in LIFO order

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
196 is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictionary is empty, calling
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
196 raises a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
144

Changed in version 3. 7. LIFO order is now guaranteed. In prior versions,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
196 would return an arbitrary key/value pair.

reversed(d)

Return a reverse iterator over the keys of the dictionary. This is a shortcut for

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
200

New in version 3. 8

setdefault(key[ , default])

If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default defaults to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

update([other])

Cập nhật từ điển với các cặp khóa/giá trị từ khác, ghi đè lên các khóa hiện có. Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
146 accepts either another dictionary object or an iterable of key/value pairs (as tuples or other iterables of length two). If keyword arguments are specified, the dictionary is then updated with those key/value pairs.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
204

values()

Return a new view of the dictionary’s values. See the documentation of view objects .

An equality comparison between one

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
205 view and another will always return
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38. This also applies when comparing
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
205 to itself

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
01

d . other

Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries. The values of other take priority when d and other share keys

New in version 3. 9

d . = other

Update the dictionary d with keys and values from other, which may be either a mapping or an iterable of key/value pairs. The values of other take priority when d and other share keys.

New in version 3. 9

Dictionaries compare equal if and only if they have the same

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
193 pairs (regardless of ordering). Order comparisons (‘<’, ‘<=’, ‘>=’, ‘>’) raise
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
88.

Từ điển bảo toàn thứ tự chèn. Lưu ý rằng việc cập nhật khóa không ảnh hưởng đến thứ tự. Keys added after deletion are inserted at the end

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
02

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order. This behavior was an implementation detail of CPython from 3. 6.

Dictionaries and dictionary views are reversible

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
03

Changed in version 3. 8. Dictionaries are now reversible.

See also

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
210 can be used to create a read-only view of a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6468

Dictionary view objects¶

The objects returned by

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
212,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
205 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
214 are view objects. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes

Dictionary views can be iterated over to yield their respective data, and support membership tests

len(dictview)

Return the number of entries in the dictionary

iter(dictview)

Return an iterator over the keys, values or items (represented as tuples of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
193) in the dictionary

Keys and values are iterated over in insertion order. This allows the creation of

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
216 pairs using
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
217.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
218. Another way to create the same list is
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
219

Iterating views while adding or deleting entries in the dictionary may raise a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
220 or fail to iterate over all entries

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order.

x in dictview

Return

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56 if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
193 tuple)

reversed(dictview)

Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse order of the insertion

Changed in version 3. 8. Chế độ xem từ điển hiện có thể đảo ngược.

dictview. mapping

Return a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
210 that wraps the original dictionary to which the view refers

New in version 3. 10

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
193 pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since the entries are generally not unique. ) For set-like views, all of the operations defined for the abstract base class
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
225 are available (for example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
78,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
74, or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
228)

An example of dictionary view usage

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
04

Context Manager Types¶

Python’s

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statement supports the concept of a runtime context defined by a context manager. This is implemented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement body is executed and exited when the statement ends

contextmanager. __enter__()

Enter the runtime context and return either this object or another object related to the runtime context. The value returned by this method is bound to the identifier in the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
230 clause of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statements using this context manager

An example of a context manager that returns itself is a file object . File objects return themselves from __enter__() to allow

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
232 to be used as the context expression in a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statement.

An example of a context manager that returns a related object is the one returned by

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
234. These managers set the active decimal context to a copy of the original decimal context and then return the copy. This allows changes to be made to the current decimal context in the body of the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statement without affecting code outside the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statement

contextmanager. __exit__(exc_type , exc_val , exc_tb)

Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed. If an exception occurred while executing the body of the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statement, the arguments contain the exception type, value and traceback information. Otherwise, all three arguments are
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

Returning a true value from this method will cause the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statement to suppress the exception and continue execution with the statement immediately following the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statement. Otherwise the exception continues propagating after this method has finished executing. Exceptions that occur during execution of this method will replace any exception that occurred in the body of the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
077 statement

The exception passed in should never be reraised explicitly - instead, this method should return a false value to indicate that the method completed successfully and does not want to suppress the raised exception. This allows context management code to easily detect whether or not an

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
242 method has actually failed

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially beyond their implementation of the context management protocol. See the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
243 module for some examples

Python’s generator s and the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
244 decorator provide a convenient way to implement these protocols. If a generator function is decorated with the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
244 decorator, it will return a context manager implementing the necessary
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
246 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
242 methods, rather than the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API. Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible

Type Annotation Types — Generic Alias , Union ¶

The core built-in types for type annotations are Generic Alias and Union .

Generic Alias Type¶

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 objects are generally created by subscripting a class. They are most often used with container classes , such as
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6393 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6468. For example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
251 is a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 object created by subscripting the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6393 class with the argument
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 objects are intended primarily for use with type annotations .

Note

It is generally only possible to subscript a class if the class implements the special method

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
256

A

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 object acts as a proxy for a generic type , implementing parameterized generics.

Đối với lớp vùng chứa, (các) đối số được cung cấp cho đăng ký của lớp có thể cho biết (các) loại phần tử . For example,

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
258 can be used in type annotations to signify a
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6469 in which all the elements are of type
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423.

For a class which defines

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
256 but is not a container, the argument(s) supplied to a subscription of the class will often indicate the return type(s) of one or more methods defined on an object. For example,
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
262 can be used on both the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6422 data type and the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423 data type

  • If

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    265,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    982 will be a re. Match object where the return values of
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    267 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    268 will both be of type
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6422. We can represent this kind of object in type annotations with the
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    248
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    271.

  • Nếu

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    272, (lưu ý
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    8246 cho
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6423), thì
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6331 cũng sẽ là một thể hiện của
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    276, nhưng các giá trị trả về của
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    277 và
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    278 đều sẽ thuộc loại
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6423. Trong các chú thích loại, chúng tôi sẽ trình bày nhiều loại re. Khớp các đối tượng với
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    280.

Các đối tượng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 là các thể hiện của lớp
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
282, cũng có thể được sử dụng để tạo trực tiếp các đối tượng
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248

T[X, Y, . ]

Tạo một

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 đại diện cho một loại
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
285 được tham số hóa bởi các loại X, Y, v.v. tùy thuộc vào
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
285 được sử dụng. Ví dụ: một hàm mong đợi một
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6393 chứa các phần tử
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
902

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
05

Một ví dụ khác cho các đối tượng ánh xạ , sử dụng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6468, là loại chung cần có hai tham số loại đại diện cho loại khóa và loại giá trị. Trong ví dụ này, hàm mong đợi một
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6468 với các khóa thuộc loại
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6422 và các giá trị thuộc loại
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
06

Các hàm dựng sẵn

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
293 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
294 không chấp nhận các loại
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 cho đối số thứ hai của chúng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
07

Thời gian chạy Python không thực thi chú thích loại . Điều này mở rộng đến các loại chung và các tham số loại của chúng. Khi tạo đối tượng vùng chứa từ

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248, các phần tử trong vùng chứa không được kiểm tra đối với loại của chúng. Ví dụ: đoạn mã sau không được khuyến khích nhưng sẽ chạy không có lỗi.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
08

Furthermore, parameterized generics erase type parameters during object creation

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
09

Calling

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
32 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
33 on a generic shows the parameterized type

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
10

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
7768 method of generic containers will raise an exception to disallow mistakes like
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
300

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
11

However, such expressions are valid when type variables are used. The index must have as many elements as there are type variable items in the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 object’s
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
302.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
12

Standard Generic Classes¶

The following standard library classes support parameterized generics. This list is non-exhaustive

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6394

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6393

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6468

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6469

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6470

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    308

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    309

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    181

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    311

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    179

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    313

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    314

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    315

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    316

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    317

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    318

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    319

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    320

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    321

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    322

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    323

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    324

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    325

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    225

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    327

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    328

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    329

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6396

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6472

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    332

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    333

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    334

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    335

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    336

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    337

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    338

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    339

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    340

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    341

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    342

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    343

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    344

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    345

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    346

  • re. Pattern

  • re. Match

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    347

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    348

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    349

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    210

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    351

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    352

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    353

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    354

Special Attributes of
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 objects¶

All parameterized generics implement special read-only attributes

genericalias. __origin__

This attribute points at the non-parameterized generic class

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
13

genericalias. __args__

This attribute is a

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6394 (possibly of length 1) of generic types passed to the original
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
256 of the generic class

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
14

genericalias. __parameters__

This attribute is a lazily computed tuple (possibly empty) of unique type variables found in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
302

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
15

Note

Một đối tượng

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
248 với các tham số
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
360 có thể không có
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
361 chính xác sau khi thay thế vì
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
360 chủ yếu dành cho kiểm tra kiểu tĩnh

tên chung. __unpacked__

A boolean that is true if the alias has been unpacked using the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6400 operator (see
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
364)

New in version 3. 11

See also

PEP 484 - Gợi ý loại

Giới thiệu khung của Python cho các chú thích loại

PEP 585 - Nhập gợi ý Generics trong bộ sưu tập tiêu chuẩn

Giới thiệu khả năng tham số hóa các lớp thư viện tiêu chuẩn, miễn là chúng triển khai phương thức lớp đặc biệt

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
256

Thuốc chung , thuốc chung do người dùng định nghĩa
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
366

Tài liệu về cách triển khai các lớp chung có thể được tham số hóa trong thời gian chạy và được hiểu bởi trình kiểm tra kiểu tĩnh

New in version 3. 9

Loại liên minh¶

Đối tượng hợp lưu giữ giá trị của phép toán

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
367 (theo bit hoặc) trên nhiều đối tượng loại . Các loại này chủ yếu dành cho chú thích loại . Biểu thức kiểu kết hợp cho phép cú pháp gợi ý kiểu sạch hơn so với
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
368.

X . Y . .

Xác định một đối tượng kết hợp chứa các loại X, Y, v.v.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
369 có nghĩa là X hoặc Y. Nó tương đương với
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
370. Ví dụ: hàm sau mong đợi một đối số kiểu
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
902

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
16

union_object == other

Union objects can be tested for equality with other union objects. Details

  • Unions of unions are flattened

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    17

  • Redundant types are removed

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    18

  • When comparing unions, the order is ignored

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    19

  • It is compatible with

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    368

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    20

  • Optional types can be spelled as a union with

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    31

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    21

isinstance(obj, union_object)issubclass(obj, union_object)

Calls to

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
293 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
294 are also supported with a union object

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
22

However, union objects containing parameterized generics cannot be used.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
23

The user-exposed type for the union object can be accessed from

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
377 and used for
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
293 checks. An object cannot be instantiated from the type

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
24

Note

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
379 method for type objects was added to support the syntax
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
369. If a metaclass implements
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
379, the Union may override it

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
25

See also

PEP 604 – PEP proposing the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
369 syntax and the Union type

New in version 3. 10

Other Built-in Types¶

The interpreter supports several other kinds of objects. Most of these support only one or two operations

Modules¶

The only special operation on a module is attribute access.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
383, where m is a module and name accesses a name defined in m’s symbol table. Module attributes can be assigned to. (Lưu ý rằng câu lệnh
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
384 nói đúng ra không phải là một thao tác trên đối tượng mô-đun;
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
385 không yêu cầu đối tượng mô-đun có tên foo tồn tại, thay vào đó, nó yêu cầu định nghĩa (bên ngoài) cho mô-đun có tên foo ở đâu đó. )

A special attribute of every module is

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
386. This is the dictionary containing the module’s symbol table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
386 attribute is not possible (you can write
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
388, which defines
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
389 to be
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
55, but you can’t write
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
391). Modifying
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
386 directly is not recommended

Modules built into the interpreter are written like this.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
393. If loaded from a file, they are written as
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
394

Classes and Class Instances¶

See Objects, values and types and Class definitions for these.

Functions¶

Function objects are created by function definitions. The only operation on a function object is to call it.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
395

There are really two flavors of function objects. built-in functions and user-defined functions. Both support the same operation (to call the function), but the implementation is different, hence the different object types

See Function definitions for more information.

Methods¶

Methods are functions that are called using the attribute notation. There are two flavors. built-in methods (such as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
396 on lists) and class instance methods. Built-in methods are described with the types that support them

If you access a method (a function defined in a class namespace) through an instance, you get a special object. a bound method (also called instance method) object. When called, it will add the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
397 argument to the argument list. Bound methods have two special read-only attributes.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
398 is the object on which the method operates, and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
399 is the function implementing the method. Calling
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
400 is completely equivalent to calling
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
401

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are actually stored on the underlying function object (

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
402), setting method attributes on bound methods is disallowed. Attempting to set an attribute on a method results in an
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
403 being raised. In order to set a method attribute, you need to explicitly set it on the underlying function object

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
26

See The standard type hierarchy for more information.

Code Objects¶

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a function body. They differ from function objects because they don’t contain a reference to their global execution environment. Code objects are returned by the built-in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
404 function and can be extracted from function objects through their
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
405 attribute. See also the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
406 module

Accessing

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
405 raises an auditing event
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
408 with arguments
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
409 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
410.

A code object can be executed or evaluated by passing it (instead of a source string) to the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
411 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
412 built-in functions

See The standard type hierarchy for more information.

Type Objects¶

Type objects represent the various object types. An object’s type is accessed by the built-in function

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
413. There are no special operations on types. The standard module
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
414 defines names for all standard built-in types

Types are written like this.

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
415

The Null Object¶

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is exactly one null object, named

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31 (a built-in name).
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
417 produces the same singleton

Nó được viết là

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
31

The Ellipsis Object¶

This object is commonly used by slicing (see Slicings ). It supports no special operations. There is exactly one ellipsis object, named

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
419 (a built-in name).
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
420 produces the
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
419 singleton.

It is written as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
419 or
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
423

The NotImplemented Object¶

This object is returned from comparisons and binary operations when they are asked to operate on types they don’t support. See Comparisons for more information. There is exactly one

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
424 object.
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
425 produces the singleton instance.

It is written as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
424

Boolean Values¶

Boolean values are the two constant objects

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56. They are used to represent truth values (although other values can also be considered false or true). In numeric contexts (for example when used as the argument to an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
429 can be used to convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written as

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
38 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
56, respectively

Internal Objects¶

See The standard type hierarchy for this information. It describes stack frame objects, traceback objects, and slice objects.

Special Attributes¶

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of these are not reported by the

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
432 built-in function

object. __dict__

A dictionary or other mapping object used to store an object’s (writable) attributes

instance. __class__

The class to which a class instance belongs

lớp. __base__

The tuple of base classes of a class object

definition. __name__

The name of the class, function, method, descriptor, or generator instance

definition. __qualname__

The qualified name of the class, function, method, descriptor, or generator instance.

New in version 3. 3

class. __mro__

This attribute is a tuple of classes that are considered when looking for base classes during method resolution

class. mro()

This method can be overridden by a metaclass to customize the method resolution order for its instances. It is called at class instantiation, and its result is stored in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
433

class. __subclasses__()

Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those references still alive. The list is in definition order. Example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
27

Giới hạn độ dài chuyển đổi chuỗi số nguyên¶

CPython has a global limit for converting between

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901 and
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6422 to mitigate denial of service attacks. This limit only applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are unlimited. The limit can be configured

The

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901 type in CPython is an abitrary length number stored in binary form (commonly known as a “bignum”). There exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless the base is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a large value such as
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
437 can take over a second on a fast CPU

Limiting conversion size offers a practical way to avoid CVE-2020-10735

Giới hạn được áp dụng cho số ký tự chữ số trong chuỗi đầu vào hoặc đầu ra khi sử dụng thuật toán chuyển đổi phi tuyến tính. Underscores and the sign are not counted towards the limit

Khi một hoạt động sẽ vượt quá giới hạn, một

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
977 được nâng lên

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
28

The default limit is 4300 digits as provided in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
439. The lowest limit that can be configured is 640 digits as provided in
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
440

Verification

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
29

New in version 3. 11

Affected APIs¶

Giới hạn chỉ áp dụng cho các chuyển đổi có khả năng chậm giữa

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
901 và
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6422 hoặc
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6423

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    444 with default base 10

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    445 for all bases that are not a power of 2

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    446

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    447

  • any other string conversion to base 10, for example

    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    448,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    449, or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    450

The limitations do not apply to functions with a linear algorithm

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    445 with base 2, 4, 8, 16, or 32

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    452 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    453

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    454,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    455,
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    456

  • Format Specification Mini-Language for hex, octal, and binary numbers.

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6422 to
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    902

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    6422 to
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    908

Configuring the limit¶

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the limit

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    461, e. g.
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    462 to set the limit to 640 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    463 to disable the limitation

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    464, e. g.
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    465

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    466 contains the value of
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    461 or
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    464. If both the env var and the
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    469 option are set, the
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    469 option takes precedence. Giá trị -1 cho biết rằng cả hai đều không được đặt, giá trị này là ________ 0439 đã được sử dụng trong quá trình khởi tạo

From code, you can inspect the current limit and set a new one using these

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
472 APIs

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    473 and
    def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    474 are a getter and setter for the interpreter-wide limit. Subinterpreters have their own limit

Information about the default and minimum can be found in

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
475

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    439 is the compiled-in default limit

  • def bit_length(self):
        s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
        s = s.lstrip('-0b') # remove leading zeros and minus sign
        return len(s)       # len('100101') --> 6
    
    440 là giá trị thấp nhất được chấp nhận cho giới hạn (khác 0 sẽ vô hiệu hóa nó)

New in version 3. 11

thận trọng

Đặt giới hạn thấp có thể dẫn đến sự cố. Mặc dù hiếm gặp, mã tồn tại chứa các hằng số nguyên ở dạng thập phân trong nguồn của chúng vượt quá ngưỡng tối thiểu. Hậu quả của việc đặt giới hạn là mã nguồn Python chứa các số nguyên thập phân dài hơn giới hạn sẽ gặp lỗi trong quá trình phân tích cú pháp, thường là tại thời điểm khởi động hoặc thời điểm nhập hoặc thậm chí tại thời điểm cài đặt - bất kỳ lúc nào bản cập nhật

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
478 chưa tồn tại cho . Một giải pháp thay thế cho nguồn chứa các hằng số lớn như vậy là chuyển đổi chúng sang dạng thập lục phân
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
6312 vì nó không có giới hạn

Kiểm tra ứng dụng của bạn kỹ lưỡng nếu bạn sử dụng giới hạn thấp. Đảm bảo các thử nghiệm của bạn chạy với giới hạn được đặt sớm thông qua môi trường hoặc cờ để nó áp dụng trong quá trình khởi động và thậm chí trong bất kỳ bước cài đặt nào có thể gọi Python để biên dịch trước nguồn

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
480 thành tệp
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
478

Cấu hình đề xuất¶

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
439 mặc định dự kiến ​​sẽ hợp lý cho hầu hết các ứng dụng. Nếu ứng dụng của bạn yêu cầu một giới hạn khác, hãy đặt giới hạn đó từ điểm vào chính của bạn bằng cách sử dụng mã bất khả tri của phiên bản Python vì các API này đã được thêm vào trong các bản phát hành bản vá bảo mật ở các phiên bản trước 3. 11

Example

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
30

Nếu bạn cần tắt hoàn toàn, hãy đặt thành

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
42

chú thích

1

Thông tin bổ sung về các phương pháp đặc biệt này có thể được tìm thấy trong Hướng dẫn tham khảo Python ( Tùy chỉnh cơ bản ).

2

Kết quả là, danh sách

def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
484 được coi là bằng với
def bit_length(self):
    s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
    s = s.lstrip('-0b') # remove leading zeros and minus sign
    return len(s)       # len('100101') --> 6
485 và tương tự đối với các bộ dữ liệu

3

Chúng phải có vì trình phân tích cú pháp không thể cho biết loại toán hạng

4(1,2,3,4)

Các ký tự viết hoa là những ký tự có thuộc tính danh mục chung là một trong số “Lu” (Chữ cái, chữ hoa), “Ll” (Chữ cái, chữ thường) hoặc “Lt” (Chữ cái, chữ hoa tiêu đề)

5(1,2)

Do đó, để chỉ định dạng một bộ dữ liệu, bạn nên cung cấp một bộ dữ liệu đơn có phần tử duy nhất là bộ dữ liệu được định dạng