Chuỗi Python thành số

Một số lớp bộ sưu tập có thể thay đổi. Các phương thức cộng, trừ hoặc sắp xếp lại các thành viên của chúng tại chỗ và không trả về một mục cụ thể, không bao giờ trả về chính thể hiện của bộ sưu tập nhưng def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31

Một số hoạt động được hỗ trợ bởi một số loại đối tượng; . Hàm thứ hai được sử dụng ngầm khi một đối tượng được viết bởi hàm

Kiểm tra giá trị thật

Bất kỳ đối tượng nào cũng có thể được kiểm tra giá trị thực, để sử dụng trong một hoặc điều kiện hoặc dưới dạng toán hạng của các phép toán Boolean bên dưới

Theo mặc định, một đối tượng được coi là đúng trừ khi lớp của nó định nghĩa phương thức def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 37 trả về def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 hoặc phương thức def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 39 trả về 0 khi được gọi với đối tượng. Dưới đây là hầu hết các đối tượng tích hợp được coi là sai

  • hằng số được xác định là sai. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31 và def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38

  • số không của bất kỳ loại số nào. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 43, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 44, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 45, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 46

  • trình tự và bộ sưu tập trống. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 47, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 48, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 49, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 50, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 51, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 52

Các phép toán và hàm dựng sẵn có kết quả Boolean luôn trả về def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42 hoặc def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 nếu sai và def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 55 hoặc def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 nếu đúng, trừ khi có quy định khác. (Ngoại lệ quan trọng. các phép toán Boolean def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 57 và def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 58 luôn trả về một trong các toán hạng của chúng. )

Phép toán Boolean — def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 58, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 57, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 61

Đây là các phép toán Boolean, được sắp xếp theo mức độ ưu tiên tăng dần

Hoạt động

Kết quả

ghi chú

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 62

nếu x sai, thì y, ngược lại x

(1)

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 63

nếu x sai, thì x, ngược lại y

(2)

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 64

nếu x sai, thì def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56, ngược lại thì def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38

(3)

ghi chú

  1. Đây là toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu đối số thứ nhất sai

  2. Đây là toán tử ngắn mạch, vì vậy nó chỉ đánh giá đối số thứ hai nếu đối số thứ nhất đúng

  3. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 61 có mức ưu tiên thấp hơn so với các toán tử không phải Boolean, vì vậy def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 68 được hiểu là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 69 và def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 70 là một lỗi cú pháp

so sánh

Có tám thao tác so sánh trong Python. Tất cả chúng đều có cùng mức độ ưu tiên (cao hơn so với các phép toán Boolean). So sánh có thể được xâu chuỗi tùy ý;

Bảng này tóm tắt các hoạt động so sánh

Hoạt động

Nghĩa

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 74

hoàn toàn ít hơn

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 75

nhỏ hơn hoặc bằng

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 76

tuyệt đối lớn hơn

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 77

lớn hơn hoặc bằng

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 78

công bằng

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 79

không công bằng

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 80

nhận dạng đối tượng

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 81

danh tính đối tượng phủ định

Các đối tượng thuộc các loại khác nhau, ngoại trừ các loại số khác nhau, không bao giờ so sánh bằng nhau. Toán tử def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 78 luôn được xác định nhưng đối với một số loại đối tượng (ví dụ: đối tượng lớp) tương đương với. Các toán tử def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 74, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 75, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 76 và def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 77 chỉ được xác định khi chúng có ý nghĩa;

Các thể hiện không giống nhau của một lớp thường được so sánh là không bằng nhau trừ khi lớp đó định nghĩa phương thức

Các thể hiện của một lớp không thể được sắp xếp theo thứ tự đối với các thể hiện khác của cùng một lớp hoặc các loại đối tượng khác, trừ khi lớp đó định nghĩa đủ các phương thức , , , và (nói chung là đủ, nếu bạn muốn ý nghĩa quy ước của

Không thể tùy chỉnh hành vi của toán tử và;

Hai thao tác nữa có cùng mức ưu tiên cú pháp và , được hỗ trợ bởi các loại hoặc triển khai phương thức >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 00

Các loại số — , ,

Có ba loại số riêng biệt. số nguyên, số dấu phẩy động và số phức. Ngoài ra, Booleans là một kiểu con của số nguyên. Số nguyên có độ chính xác không giới hạn. Số dấu phẩy động thường được triển khai bằng cách sử dụng double trong C; . Số phức có phần thực và phần ảo, mỗi phần là một số dấu phẩy động. Để trích xuất các phần này từ một số phức z, hãy sử dụng >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 05 và >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 06. (Thư viện chuẩn bao gồm các loại số bổ sung , cho số hữu tỷ và , cho số dấu phẩy động với độ chính xác do người dùng xác định. )

Các số được tạo bởi các chữ số hoặc là kết quả của các hàm và toán tử tích hợp. Các số nguyên không trang trí (bao gồm cả số hex, bát phân và nhị phân) mang lại số nguyên. Chữ số có chứa dấu thập phân hoặc dấu mũ mang lại số dấu phẩy động. Việc thêm >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 09 hoặc >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 10 vào một chữ số sẽ tạo ra một số ảo (một số phức có phần thực bằng 0) mà bạn có thể thêm vào một số nguyên hoặc dấu phẩy động để nhận được một số phức có phần thực và phần ảo

Python hỗ trợ đầy đủ số học hỗn hợp. khi một toán tử số học nhị phân có các toán hạng thuộc các kiểu số khác nhau, thì toán hạng có loại "hẹp hơn" được mở rộng sang toán hạng kia, trong đó số nguyên hẹp hơn dấu phẩy động, hẹp hơn phức hợp. So sánh giữa các số thuộc các loại khác nhau hoạt động như thể các giá trị chính xác của các số đó đang được so sánh.

Các hàm tạo , , và có thể được sử dụng để tạo các số thuộc một loại cụ thể

Tất cả các loại số (ngoại trừ phức tạp) đều hỗ trợ các thao tác sau (để biết mức độ ưu tiên của các thao tác, xem phần )

Hoạt động

Kết quả

ghi chú

tài liệu đầy đủ

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 14

tổng của x và y

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 15

sự khác biệt của x và y

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 16

sản phẩm của x và y

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 17

thương của x và y

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 18

thương số sàn của x và y

(1)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 19

phần còn lại của >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 17

(2)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 21

x phủ nhận

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 22

x không thay đổi

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 23

giá trị tuyệt đối hoặc độ lớn của x

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 25

x chuyển thành số nguyên

(3)(6)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 27

x được chuyển đổi thành dấu phẩy động

(4)(6)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 29

số phức có phần thực là phần ảo. tôi mặc định là không

(6)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 31

liên hợp của số phức c

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 32

cặp >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 33

(2)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 35

x lũy thừa y

(5)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 37

x lũy thừa y

(5)

ghi chú

  1. Còn gọi là phép chia số nguyên. Giá trị kết quả là một số nguyên, mặc dù loại kết quả không nhất thiết phải là int. Kết quả luôn được làm tròn về phía âm vô cùng. >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 38 là _______0_______42, _______51_______40 là _______51_______41, _______51_______42 là _______51_______41, và _______51_______44 là _________42

  2. Không dành cho số phức. Thay vào đó, hãy chuyển đổi thành float bằng cách sử dụng nếu thích hợp

  3. Chuyển đổi từ dấu phẩy động sang số nguyên có thể làm tròn hoặc cắt ngắn như trong C;

  4. float cũng chấp nhận các chuỗi “nan” và “inf” với tiền tố tùy chọn “+” hoặc “-” cho Không phải là Số (NaN) và vô cực dương hoặc âm

  5. Python định nghĩa >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 49 và >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 50 là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 55, như thường thấy đối với các ngôn ngữ lập trình

  6. Các chữ số được chấp nhận bao gồm các chữ số def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42 đến >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 53 hoặc bất kỳ mã Unicode tương đương nào (điểm mã với thuộc tính >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 54)

    Xem https. //www. unicode. tổ chức/Công khai/14. 0. 0/ucd/extracted/DerivedNumericType. txt để biết danh sách đầy đủ các điểm mã với thuộc tính >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 54

Tất cả các loại ( và ) cũng bao gồm các thao tác sau

Hoạt động

Kết quả

x cắt ngắn thành

x làm tròn đến n chữ số, làm tròn một nửa thành chẵn. Nếu n bị bỏ qua, nó mặc định là 0

lớn nhất = x

Đối với các hoạt động số bổ sung, hãy xem và mô-đun

Hoạt động Bitwise trên các loại số nguyên

Hoạt động bitwise chỉ có ý nghĩa đối với số nguyên. Kết quả của các hoạt động theo bit được tính toán như thể được thực hiện trong phần bù hai với số lượng bit dấu vô hạn

Tất cả các ưu tiên của các phép toán bitwise nhị phân đều thấp hơn các phép toán số và cao hơn các phép so sánh;

Bảng này liệt kê các hoạt động bitwise được sắp xếp theo mức độ ưu tiên tăng dần

Hoạt động

Kết quả

ghi chú

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 71

bitwise hoặc của x và y

(4)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 72

loại trừ theo bit hoặc của x và y

(4)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 73

bitwise và của x và y

(4)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 74

x dịch sang trái n bit

(1)(2)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 75

x dịch sang phải n bit

(1)(3)

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 76

các bit của x đảo ngược

ghi chú

  1. Số lần thay đổi âm là bất hợp pháp và gây ra một sự gia tăng

  2. Dịch trái n bit tương đương với phép nhân với >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 78

  3. Dịch chuyển sang phải n bit tương đương với phép chia sàn cho >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 78

  4. Thực hiện các phép tính này với ít nhất một bit mở rộng dấu phụ trong biểu diễn phần bù của hai hữu hạn (độ rộng bit làm việc là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 80 trở lên) là đủ để có được kết quả tương tự như thể có vô số bit dấu

Các phương thức bổ sung trên các kiểu số nguyên

Kiểu int thực hiện. Ngoài ra nó còn cung cấp thêm một số phương pháp

int. bit_length()

Trả về số bit cần thiết để biểu diễn một số nguyên ở dạng nhị phân, không bao gồm dấu và các số 0 ở đầu

>>> n = -37 >>> bin(n) '-0b100101' >>> n.bit_length() 6

Chính xác hơn, nếu >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 82 khác 0, thì >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 83 là số nguyên dương duy nhất >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 84 sao cho >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 85. Tương tự, khi >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 23 đủ nhỏ để có logarit được làm tròn chính xác, thì >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 87. Nếu >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 82 bằng 0, thì >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 83 trả về def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42

Tương đương với

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6

Mới trong phiên bản 3. 1

int. bit_count()

Trả về số đơn vị trong biểu diễn nhị phân của giá trị tuyệt đối của số nguyên. Đây còn được gọi là số lượng dân số. Thí dụ

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3

Tương đương với

def bit_count(self): return bin(self).count("1")

Mới trong phiên bản 3. 10

int. to_byte(độ dài=1, byteorder='big', *, signed=False)

Trả về một mảng byte đại diện cho một số nguyên

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03'

Số nguyên được biểu diễn bằng byte độ dài và mặc định là 1. An được nâng lên nếu số nguyên không thể biểu thị được với số byte đã cho

Đối số byteorder xác định thứ tự byte được sử dụng để biểu thị số nguyên và mặc định là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 92. Nếu thứ tự byte là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 92, thì byte quan trọng nhất nằm ở đầu mảng byte. Nếu byteorder là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 94, thì byte quan trọng nhất nằm ở cuối mảng byte

Đối số đã ký xác định xem phần bù của hai có được sử dụng để biểu diễn số nguyên hay không. Nếu được ký là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 và một số nguyên âm được đưa ra, thì an được nâng lên. Giá trị mặc định cho đã ký là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38

Các giá trị mặc định có thể được sử dụng để biến một số nguyên thành một đối tượng byte đơn một cách thuận tiện. Tuy nhiên, khi sử dụng các đối số mặc định, đừng cố chuyển đổi một giá trị lớn hơn 255, nếu không bạn sẽ nhận được một

>>> (65).to_bytes() b'A'

Tương đương với

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order)

Mới trong phiên bản 3. 2

Đã thay đổi trong phiên bản 3. 11. Đã thêm các giá trị đối số mặc định cho >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 99 và def bit_count(self): return bin(self).count("1") 00.

phương thức lớp int. từ_byte(byte , thứ tự byte='big', *, signed=False)

Trả về số nguyên được đại diện bởi mảng byte đã cho

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680

Các byte đối số phải là một hoặc một byte tạo ra có thể lặp lại

Đối số byteorder xác định thứ tự byte được sử dụng để biểu thị số nguyên và mặc định là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 92. Nếu thứ tự byte là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 92, thì byte quan trọng nhất nằm ở đầu mảng byte. Nếu byteorder là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 94, thì byte quan trọng nhất nằm ở cuối mảng byte. Để yêu cầu thứ tự byte gốc của hệ thống máy chủ, hãy sử dụng làm giá trị thứ tự byte

Đối số có dấu cho biết liệu phần bù hai có được sử dụng để biểu diễn số nguyên hay không

Tương đương với

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n

Mới trong phiên bản 3. 2

Đã thay đổi trong phiên bản 3. 11. Đã thêm giá trị đối số mặc định cho def bit_count(self): return bin(self).count("1") 00.

int. as_integer_ratio()

Trả về một cặp số nguyên có tỷ lệ chính xác bằng số nguyên ban đầu và có mẫu số dương. Tỷ lệ nguyên của các số nguyên (số nguyên) luôn là số nguyên làm tử số và def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 55 làm mẫu số

Mới trong phiên bản 3. 8

Phương pháp bổ sung trên Float

Kiểu float thực hiện. float cũng có các phương thức bổ sung sau

nổi. as_integer_ratio()

Trả về một cặp số nguyên có tỷ lệ chính xác bằng số float ban đầu và có mẫu số dương. Tăng trên vô số và trên NaN

nổi. is_integer()

Trả về def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 nếu đối tượng float là hữu hạn với giá trị nguyên và ngược lại là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False

Hai phương thức hỗ trợ chuyển đổi sang và từ các chuỗi thập lục phân. Vì số float của Python được lưu trữ bên trong dưới dạng số nhị phân, nên việc chuyển đổi số float thành hoặc từ chuỗi thập phân thường liên quan đến một lỗi làm tròn nhỏ. Ngược lại, các chuỗi thập lục phân cho phép biểu diễn và đặc tả chính xác các số dấu phẩy động. Điều này có thể hữu ích khi gỡ lỗi và trong công việc số

nổi. hex()

Trả về biểu diễn của số dấu phẩy động dưới dạng chuỗi thập lục phân. Đối với các số có dấu phẩy động hữu hạn, biểu diễn này sẽ luôn bao gồm một số ở đầu def bit_count(self): return bin(self).count("1") 12 và một số sau ____113_______13 và số mũ

phương thức lớp phao. từ hex(s)

Phương thức lớp để trả về số float được biểu thị bằng chuỗi thập lục phân s. Chuỗi s có thể có khoảng trắng ở đầu và cuối

Lưu ý rằng đó là một phương thức cá thể, trong khi đó là một phương thức lớp

Một chuỗi thập lục phân có dạng

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 0

trong đó tùy chọn def bit_count(self): return bin(self).count("1") 16 có thể bằng một trong hai tên là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 69 hoặc >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 70, def bit_count(self): return bin(self).count("1") 19 và def bit_count(self): return bin(self).count("1") 20 là chuỗi các chữ số thập lục phân và def bit_count(self): return bin(self).count("1") 21 là số nguyên thập phân có dấu tùy chọn ở đầu. Trường hợp không đáng kể và phải có ít nhất một chữ số thập lục phân trong số nguyên hoặc phân số. Cú pháp này tương tự như cú pháp quy định tại mục 6. 4. 4. 2 của tiêu chuẩn C99 và cả cú pháp được sử dụng trong Java 1. 5 trở đi. Cụ thể, đầu ra của có thể sử dụng dưới dạng ký tự dấu phẩy động thập lục phân trong mã C hoặc Java và các chuỗi thập lục phân được tạo bởi ký tự định dạng __113_______23 của C hoặc ____113_______24 của Java được chấp nhận bởi

Lưu ý rằng số mũ được viết dưới dạng thập phân chứ không phải thập lục phân và nó mang lại sức mạnh của 2 để nhân hệ số. Ví dụ: chuỗi thập lục phân def bit_count(self): return bin(self).count("1") 26 đại diện cho số dấu phẩy động def bit_count(self): return bin(self).count("1") 27 hoặc def bit_count(self): return bin(self).count("1") 28

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 1

Áp dụng chuyển đổi ngược lại cho def bit_count(self): return bin(self).count("1") 28 sẽ cho một chuỗi thập lục phân khác đại diện cho cùng một số

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 2

Băm các loại số

Đối với các số >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 82 và def bit_count(self): return bin(self).count("1") 31, có thể thuộc các loại khác nhau, yêu cầu là ____113_______32 bất cứ khi nào def bit_count(self): return bin(self).count("1") 33 (xem tài liệu về phương pháp để biết thêm chi tiết). Để dễ triển khai và hiệu quả trên nhiều loại số (bao gồm , và ) Hàm băm của Python cho các loại số dựa trên một hàm toán học duy nhất được xác định cho bất kỳ số hữu tỷ nào và do đó áp dụng cho tất cả các trường hợp của và , và tất cả các trường hợp hữu hạn . Về cơ bản, hàm này được cho bởi modulo rút gọn def bit_count(self): return bin(self).count("1") 43 cho số nguyên tố cố định def bit_count(self): return bin(self).count("1") 43. Giá trị của def bit_count(self): return bin(self).count("1") 43 được cung cấp cho Python dưới dạng thuộc tính def bit_count(self): return bin(self).count("1") 46 của

Chi tiết triển khai CPython. Hiện tại, số nguyên tố được sử dụng là def bit_count(self): return bin(self).count("1") 48 trên các máy có độ dài C 32 bit và def bit_count(self): return bin(self).count("1") 49 trên các máy có độ dài C 64 bit

Dưới đây là các quy tắc chi tiết

  • Nếu def bit_count(self): return bin(self).count("1") 50 là một số hữu tỉ không âm và def bit_count(self): return bin(self).count("1") 51 không chia hết cho def bit_count(self): return bin(self).count("1") 43, hãy xác định def bit_count(self): return bin(self).count("1") 53 là def bit_count(self): return bin(self).count("1") 54, trong đó def bit_count(self): return bin(self).count("1") 55 cho số nghịch đảo của def bit_count(self): return bin(self).count("1") 51 theo modulo def bit_count(self): return bin(self).count("1") 43

  • Nếu def bit_count(self): return bin(self).count("1") 50 là một số hữu tỉ không âm và def bit_count(self): return bin(self).count("1") 51 chia hết cho def bit_count(self): return bin(self).count("1") 43 (nhưng def bit_count(self): return bin(self).count("1") 61 thì không) thì def bit_count(self): return bin(self).count("1") 51 không có modulo nghịch đảo def bit_count(self): return bin(self).count("1") 43 và quy tắc trên không áp dụng;

  • Nếu def bit_count(self): return bin(self).count("1") 50 là một số hữu tỷ âm, hãy xác định def bit_count(self): return bin(self).count("1") 53 là def bit_count(self): return bin(self).count("1") 68. Nếu hàm băm kết quả là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 41, hãy thay thế nó bằng def bit_count(self): return bin(self).count("1") 70

  • Các giá trị cụ thể def bit_count(self): return bin(self).count("1") 65 và def bit_count(self): return bin(self).count("1") 72 được sử dụng làm giá trị băm cho vô cực dương hoặc vô cực âm (tương ứng)

  • Đối với một số def bit_count(self): return bin(self).count("1") 74, các giá trị băm của phần thực và phần ảo được kết hợp bằng cách tính toán def bit_count(self): return bin(self).count("1") 75, rút ​​gọn modulo def bit_count(self): return bin(self).count("1") 76 để nó nằm trong ____113_______77. Một lần nữa, nếu kết quả là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 41, nó sẽ được thay thế bằng def bit_count(self): return bin(self).count("1") 70

Để làm rõ các quy tắc trên, đây là một số mã Python ví dụ, tương đương với hàm băm tích hợp, để tính toán hàm băm của một số hữu tỷ, hoặc

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 3

Các loại trình lặp

Python hỗ trợ khái niệm lặp qua các vùng chứa. Điều này được thực hiện bằng hai phương pháp riêng biệt; . Các trình tự, được mô tả chi tiết hơn bên dưới, luôn hỗ trợ các phương pháp lặp

Một phương thức cần được xác định cho các đối tượng vùng chứa để cung cấp hỗ trợ

vùng chứa. __iter__()

Trả lại một đối tượng. Đối tượng được yêu cầu hỗ trợ giao thức iterator được mô tả bên dưới. Nếu một vùng chứa hỗ trợ các kiểu lặp khác nhau, thì có thể cung cấp các phương thức bổ sung để yêu cầu cụ thể các trình lặp cho các kiểu lặp đó. (Ví dụ về một đối tượng hỗ trợ nhiều hình thức lặp sẽ là một cấu trúc cây hỗ trợ cả truyền tải theo chiều rộng và theo chiều sâu. ) Phương thức này tương ứng với vị trí của cấu trúc kiểu cho các đối tượng Python trong API Python/C

Bản thân các đối tượng lặp được yêu cầu hỗ trợ hai phương thức sau, cùng nhau tạo thành giao thức lặp

trình lặp. __iter__()

Trả lại chính đối tượng. Điều này là bắt buộc để cho phép sử dụng cả bộ chứa và bộ lặp với câu lệnh và. Phương thức này tương ứng với vị trí của cấu trúc kiểu cho các đối tượng Python trong API Python/C

trình lặp. __next__()

Trả lại mục tiếp theo từ. Nếu không có mục nào khác, hãy đưa ra ngoại lệ. Phương thức này tương ứng với vị trí của cấu trúc kiểu cho các đối tượng Python trong API Python/C

Python định nghĩa một số đối tượng trình lặp để hỗ trợ phép lặp qua các loại trình tự chung và cụ thể, từ điển và các dạng chuyên biệt hơn khác. Các loại cụ thể không quan trọng ngoài việc triển khai giao thức lặp

Khi một phương thức của trình vòng lặp tăng lên, nó phải tiếp tục làm như vậy trong các lần gọi tiếp theo. Việc triển khai không tuân theo thuộc tính này được coi là bị hỏng

Các loại máy phát điện

Python cung cấp một cách thuận tiện để triển khai giao thức lặp. Nếu phương thức def bit_count(self): return bin(self).count("1") 90 của đối tượng vùng chứa được triển khai như một trình tạo, thì nó sẽ tự động trả về một đối tượng trình vòng lặp (về mặt kỹ thuật, một đối tượng trình tạo) cung cấp def bit_count(self): return bin(self).count("1") 90 và các phương thức. Thông tin thêm về máy phát điện có thể được tìm thấy trong

Các loại trình tự — , ,

Có ba loại trình tự cơ bản. danh sách, bộ dữ liệu và đối tượng phạm vi. Các loại trình tự bổ sung được điều chỉnh để xử lý và được mô tả trong các phần dành riêng

Hoạt động tuần tự phổ biến

Các hoạt động trong bảng sau được hỗ trợ bởi hầu hết các loại trình tự, cả có thể thay đổi và không thể thay đổi. ABC được cung cấp để giúp triển khai chính xác các thao tác này trên các loại trình tự tùy chỉnh dễ dàng hơn

Bảng này liệt kê các hoạt động trình tự được sắp xếp theo mức độ ưu tiên tăng dần. Trong bảng, s và t là các chuỗi cùng loại, n, i, j và k là các số nguyên và x là một đối tượng tùy ý đáp ứng mọi hạn chế về loại và giá trị do s áp đặt

Các phép toán def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 98 và def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 99 có cùng mức độ ưu tiên như các phép toán so sánh. Các phép toán >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 69 (nối) và >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 00 (lặp lại) có cùng mức độ ưu tiên như các phép toán số tương ứng.

Hoạt động

Kết quả

ghi chú

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 01

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 nếu một mục của s bằng x, ngược lại def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38

(1)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 04

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 nếu một phần tử của s bằng x, ngược lại def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56

(1)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 07

nối của s và t

(6)(7)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 08 hoặc >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 09

tương đương với việc thêm s vào chính nó n lần

(2)(7)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 10

mục thứ i của s, gốc 0

(3)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 11

lát s từ i đến j

(3)(4)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 12

lát s từ i đến j với bước k

(3)(5)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13

chiều dài của s

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 14

mục nhỏ nhất của s

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 15

mục lớn nhất của s

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 16

chỉ số của lần xuất hiện đầu tiên của x trong s (tại hoặc sau chỉ số i và trước chỉ số j)

(số 8)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 17

tổng số lần xuất hiện của x trong s

Các chuỗi cùng loại cũng hỗ trợ so sánh. Cụ thể, các bộ dữ liệu và danh sách được so sánh theo từ điển bằng cách so sánh các phần tử tương ứng. Điều này có nghĩa là để so sánh bằng nhau, mọi phần tử phải so sánh bằng nhau và hai dãy phải cùng loại và có cùng độ dài. (Để biết đầy đủ chi tiết xem trong tài liệu tham khảo ngôn ngữ. )

Các trình vòng lặp chuyển tiếp và đảo ngược qua các chuỗi có thể thay đổi truy cập các giá trị bằng chỉ mục. Chỉ số đó sẽ tiếp tục tiến (hoặc lùi) ngay cả khi trình tự cơ bản bị đột biến. Trình vòng lặp chỉ kết thúc khi gặp an hoặc a (hoặc khi chỉ số giảm xuống dưới 0)

ghi chú

  1. Trong khi các hoạt động def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 98 và def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 99 chỉ được sử dụng cho thử nghiệm ngăn chặn đơn giản trong trường hợp chung, một số trình tự chuyên biệt (chẳng hạn như , và ) cũng sử dụng chúng cho thử nghiệm trình tự tiếp theo

    def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 4

  2. Các giá trị của n nhỏ hơn def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42 được coi là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42 (tạo ra một chuỗi trống cùng loại với s). Lưu ý rằng các mục trong chuỗi s không được sao chép; . Điều này thường ám ảnh các lập trình viên Python mới;

    def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 5

    Điều đã xảy ra là >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 27 là danh sách một phần tử chứa danh sách trống, vì vậy cả ba phần tử của >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 28 đều là tham chiếu đến danh sách trống duy nhất này. Sửa đổi bất kỳ thành phần nào của >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 29 sẽ sửa đổi danh sách đơn này. Bạn có thể tạo một danh sách các danh sách khác nhau theo cách này

    def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 6

    Giải thích thêm có sẵn trong mục Câu hỏi thường gặp

  3. Nếu i hoặc j âm, chỉ số liên quan đến phần cuối của chuỗi s. >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 30 hoặc >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 31 được thay thế. Nhưng lưu ý rằng >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 32 vẫn là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42

  4. Lát của s từ i đến j được định nghĩa là chuỗi các phần tử có chỉ số k sao cho >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 34. Nếu i hoặc j lớn hơn >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13, hãy sử dụng >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13. Nếu tôi bị bỏ qua hoặc def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, hãy sử dụng def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42. Nếu j bị bỏ qua hoặc def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, hãy sử dụng >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13. Nếu i lớn hơn hoặc bằng j, lát cắt trống

  5. Phần s từ i đến j với bước k được định nghĩa là chuỗi các mục có chỉ số >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 41 sao cho >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 42. Nói cách khác, các chỉ số là >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 43, >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 44, >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 45, >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 46, v.v., dừng khi đạt đến j (nhưng không bao giờ bao gồm j). Khi k dương, i và j giảm xuống _______114_______13 nếu chúng lớn hơn. Khi k âm, i và j giảm xuống _______114_______48 nếu chúng lớn hơn. Nếu i hoặc j bị bỏ qua hoặc def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, chúng trở thành giá trị “kết thúc” (kết thúc này phụ thuộc vào dấu của k). Lưu ý, k không thể bằng 0. Nếu k là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, nó được xử lý như def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 55

  6. Nối các chuỗi bất biến luôn dẫn đến một đối tượng mới. Điều này có nghĩa là việc xây dựng một chuỗi bằng cách nối lặp lại sẽ có chi phí thời gian chạy bậc hai trong tổng chiều dài chuỗi. Để có chi phí thời gian chạy tuyến tính, bạn phải chuyển sang một trong các lựa chọn thay thế bên dưới

    • nếu nối các đối tượng, bạn có thể tạo một danh sách và sử dụng ở cuối hoặc nếu không thì ghi vào một thể hiện và truy xuất giá trị của nó khi hoàn tất

    • nếu nối các đối tượng, bạn có thể sử dụng tương tự hoặc hoặc bạn có thể thực hiện nối tại chỗ với một đối tượng. các đối tượng có thể thay đổi và có cơ chế phân bổ tổng thể hiệu quả

    • nếu nối các đối tượng, thay vào đó hãy mở rộng a

    • đối với các loại khác, hãy điều tra tài liệu lớp có liên quan

  7. Một số loại trình tự (chẳng hạn như ) chỉ hỗ trợ các trình tự vật phẩm tuân theo các mẫu cụ thể và do đó không hỗ trợ nối hoặc lặp lại trình tự

  8. >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 63 tăng khi không tìm thấy x trong s. Không phải tất cả các triển khai đều hỗ trợ chuyển các đối số bổ sung i và j. Các đối số này cho phép tìm kiếm hiệu quả các phần phụ của chuỗi. Truyền các đối số bổ sung gần tương đương với việc sử dụng >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 65, chỉ là không sao chép bất kỳ dữ liệu nào và với chỉ mục được trả về có liên quan đến phần đầu của chuỗi chứ không phải phần đầu của lát cắt

Các loại trình tự bất biến

Thao tác duy nhất mà các loại trình tự bất biến thường triển khai mà các loại trình tự có thể thay đổi cũng không triển khai là hỗ trợ cho trình tự tích hợp sẵn

Hỗ trợ này cho phép các chuỗi bất biến, chẳng hạn như phiên bản, được sử dụng làm khóa và được lưu trữ trong và phiên bản

Cố gắng băm một chuỗi bất biến có chứa các giá trị không thể băm được sẽ dẫn đến

Các loại trình tự có thể thay đổi

Các hoạt động trong bảng sau được xác định trên các loại trình tự có thể thay đổi. ABC được cung cấp để giúp triển khai chính xác các thao tác này trên các loại trình tự tùy chỉnh dễ dàng hơn

Trong bảng s là một thể hiện của loại trình tự có thể thay đổi, t là bất kỳ đối tượng có thể lặp lại nào và x là một đối tượng tùy ý đáp ứng mọi hạn chế về loại và giá trị do s áp đặt (ví dụ: chỉ chấp nhận các số nguyên đáp ứng hạn chế về giá trị >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 74)

Hoạt động

Kết quả

ghi chú

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 75

mục i của s được thay thế bằng x

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 76

lát s từ i đến j được thay thế bằng nội dung của iterable t

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 77

giống như >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 78

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 79

các phần tử của >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 12 được thay thế bằng các phần tử của t

(1)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 81

xóa các phần tử của >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 12 khỏi danh sách

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 83

nối x vào cuối dãy (giống như >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 84)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 85

xóa tất cả các mục khỏi s (giống như >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 86)

(5)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 87

tạo một bản sao nông của s (giống như >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 88)

(5)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 89 hoặc >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 90

kéo dài s với nội dung của t (phần lớn giống như >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 91)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 92

cập nhật s với nội dung được lặp lại n lần

(6)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 93

chèn x vào s tại chỉ số được cung cấp bởi i (giống như >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 94)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 95 hoặc >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 96

truy xuất mục tại i và cũng xóa mục đó khỏi s

(2)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 97

xóa mục đầu tiên khỏi s trong đó >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 10 bằng x

(3)

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 99

đảo ngược các mục của s tại chỗ

(4)

ghi chú

  1. t phải có cùng độ dài với lát cắt mà nó đang thay thế

  2. Đối số tùy chọn i mặc định là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 41, do đó, theo mặc định, mục cuối cùng được xóa và trả lại

  3. >>> (65).to_bytes() b'A' 01 tăng khi không tìm thấy x trong s

  4. Phương pháp >>> (65).to_bytes() b'A' 03 sửa đổi trình tự tại chỗ để tiết kiệm không gian khi đảo ngược một trình tự lớn. Để nhắc nhở người dùng rằng nó hoạt động theo tác dụng phụ, nó không trả về trình tự đảo ngược

  5. >>> (65).to_bytes() b'A' 04 và >>> (65).to_bytes() b'A' 05 được bao gồm để thống nhất với giao diện của vùng chứa có thể thay đổi không hỗ trợ thao tác cắt (chẳng hạn như và ). >>> (65).to_bytes() b'A' 05 không phải là một phần của ABC, nhưng hầu hết các lớp trình tự có thể thay đổi cụ thể đều cung cấp nó

    Mới trong phiên bản 3. 3. ______120_______04 và phương thức >>> (65).to_bytes() b'A' 05.

  6. Giá trị n là một số nguyên hoặc một đối tượng thực hiện. Giá trị 0 và âm của n xóa chuỗi. Các mục trong chuỗi không được sao chép;

danh sách

Danh sách là các chuỗi có thể thay đổi, thường được sử dụng để lưu trữ các bộ sưu tập các mục đồng nhất (trong đó mức độ tương tự chính xác sẽ thay đổi tùy theo ứng dụng)

lớp danh sách([có thể lặp lại])

Danh sách có thể được xây dựng theo nhiều cách

  • Sử dụng một cặp dấu ngoặc vuông để biểu thị danh sách trống. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 49

  • Sử dụng dấu ngoặc vuông, phân tách các mục bằng dấu phẩy. >>> (65).to_bytes() b'A' 15, >>> (65).to_bytes() b'A' 16

  • Sử dụng hiểu danh sách. >>> (65).to_bytes() b'A' 17

  • Sử dụng hàm tạo kiểu. >>> (65).to_bytes() b'A' 18 hoặc >>> (65).to_bytes() b'A' 19

Hàm tạo xây dựng một danh sách có các mục giống nhau và theo cùng thứ tự với các mục của iterable. iterable may be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and returned, similar to >>> (65).to_bytes() b'A' 20. For example, >>> (65).to_bytes() b'A' 21 returns >>> (65).to_bytes() b'A' 22 and >>> (65).to_bytes() b'A' 23 returns >>> (65).to_bytes() b'A' 24. If no argument is given, the constructor creates a new empty list, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 49

Many other operations also produce lists, including the built-in

Lists implement all of the and sequence operations. Lists also provide the following additional method

sort(* , key=None , reverse=False)

This method sorts the list in place, using only def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 74 comparisons between items. Exceptions are not suppressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be left in a partially modified state)

accepts two arguments that can only be passed by keyword ()

key specifies a function of one argument that is used to extract a comparison key from each list element (for example, >>> (65).to_bytes() b'A' 29). The key corresponding to each item in the list is calculated once and then used for the entire sorting process. The default value of def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31 means that list items are sorted directly without calculating a separate key value

The utility is available to convert a 2. x style cmp function to a key function

reverse is a boolean value. If set to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56, then the list elements are sorted as if each comparison were reversed

This method modifies the sequence in place for economy of space when sorting a large sequence. To remind users that it operates by side effect, it does not return the sorted sequence (use to explicitly request a new sorted list instance)

The method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by department, then by salary grade)

For sorting examples and a brief sorting tutorial, see

CPython implementation detail. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the duration, and raises if it can detect that the list has been mutated during a sort

Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples produced by the built-in). Tuples are also used for cases where an immutable sequence of homogeneous data is needed (such as allowing storage in a or instance)

class tuple([iterable])

Tuples may be constructed in a number of ways

  • Using a pair of parentheses to denote the empty tuple. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 48

  • Using a trailing comma for a singleton tuple. >>> (65).to_bytes() b'A' 40 or >>> (65).to_bytes() b'A' 41

  • Separating items with commas. >>> (65).to_bytes() b'A' 42 or >>> (65).to_bytes() b'A' 43

  • Using the built-in. >>> (65).to_bytes() b'A' 44 or >>> (65).to_bytes() b'A' 46

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable có thể là một chuỗi, một vùng chứa hỗ trợ phép lặp hoặc một đối tượng lặp. If iterable is already a tuple, it is returned unchanged. For example, >>> (65).to_bytes() b'A' 47 returns >>> (65).to_bytes() b'A' 48 and >>> (65).to_bytes() b'A' 49 returns >>> (65).to_bytes() b'A' 50. If no argument is given, the constructor creates a new empty tuple, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 48

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional, except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, >>> (65).to_bytes() b'A' 52 is a function call with three arguments, while >>> (65).to_bytes() b'A' 53 is a function call with a 3-tuple as the sole argument

Tuples implement all of the sequence operations

For heterogeneous collections of data where access by name is clearer than access by index, may be a more appropriate choice than a simple tuple object

Ranges

The type represents an immutable sequence of numbers and is commonly used for looping a specific number of times in loops

class range(stop)class range(start , stop[ , step])

The arguments to the range constructor must be integers (either built-in or any object that implements the special method). If the step argument is omitted, it defaults to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 55. If the start argument is omitted, it defaults to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42. If step is zero, is raised

For a positive step, the contents of a range >>> (65).to_bytes() b'A' 62 are determined by the formula >>> (65).to_bytes() b'A' 63 where >>> (65).to_bytes() b'A' 64 and >>> (65).to_bytes() b'A' 65

For a negative step, the contents of the range are still determined by the formula >>> (65).to_bytes() b'A' 63, but the constraints are >>> (65).to_bytes() b'A' 64 and >>> (65).to_bytes() b'A' 68

A range object will be empty if >>> (65).to_bytes() b'A' 69 does not meet the value constraint. Ranges do support negative indices, but these are interpreted as indexing from the end of the sequence determined by the positive indices

Ranges containing absolute values larger than are permitted but some features (such as ) may raise

Range examples

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 7

Ranges implement all of the sequence operations except concatenation and repetition (due to the fact that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually violate that pattern)

start

The value of the start parameter (or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42 if the parameter was not supplied)

stop

The value of the stop parameter

step

The value of the step parameter (or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 55 if the parameter was not supplied)

The advantage of the type over a regular or is that a object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the >>> (65).to_bytes() b'A' 79, >>> (65).to_bytes() b'A' 80 and >>> (65).to_bytes() b'A' 81 values, calculating individual items and subranges as needed)

Range objects implement the ABC, and provide features such as containment tests, element index lookup, slicing and support for negative indices (see )

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 8

Testing range objects for equality with def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 78 and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 79 compares them as sequences. That is, two range objects are considered equal if they represent the same sequence of values. (Note that two range objects that compare equal might have different , and attributes, for example >>> (65).to_bytes() b'A' 88 or >>> (65).to_bytes() b'A' 89. )

Changed in version 3. 2. Implement the Sequence ABC. Support slicing and negative indices. Test objects for membership in constant time instead of iterating through all items.

Changed in version 3. 3. Define ‘==’ and ‘. =’ to compare range objects based on the sequence of values they define (instead of comparing based on object identity).

New in version 3. 3. The , and attributes.

See also

  • The linspace recipe shows how to implement a lazy version of range suitable for floating point applications

Text Sequence Type —

Textual data in Python is handled with objects, or strings. Strings are immutable of Unicode code points. String literals are written in a variety of ways

  • Single quotes. >>> (65).to_bytes() b'A' 96

  • Double quotes. >>> (65).to_bytes() b'A' 97

  • Triple quoted. >>> (65).to_bytes() b'A' 98, >>> (65).to_bytes() b'A' 99

Các chuỗi được trích dẫn ba lần có thể kéo dài trên nhiều dòng - tất cả khoảng trắng được liên kết sẽ được bao gồm trong chuỗi ký tự

String literals that are part of a single expression and have only whitespace between them will be implicitly converted to a single string literal. That is, def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 00

See for more about the various forms of string literal, including supported escape sequences, and the >>> (65).to_bytes() b'A' 62 (“raw”) prefix that disables most escape sequence processing

Strings may also be created from other objects using the constructor

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty string s, def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 03

Cũng không có loại chuỗi có thể thay đổi, nhưng hoặc có thể được sử dụng để xây dựng chuỗi từ nhiều đoạn một cách hiệu quả

Đã thay đổi trong phiên bản 3. 3. Để tương thích ngược với chuỗi Python 2, tiền tố def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 06 một lần nữa được cho phép trên chuỗi ký tự. Nó không ảnh hưởng đến nghĩa của chuỗi ký tự và không thể kết hợp với tiền tố >>> (65).to_bytes() b'A' 62.

lớp str(đối tượng='')class str(object=b'', encoding='utf-8', errors='strict')

Trả về một phiên bản của đối tượng. Nếu đối tượng không được cung cấp, trả về chuỗi rỗng. Mặt khác, hành vi của def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 33 phụ thuộc vào việc mã hóa hoặc lỗi được cung cấp hay không, như sau

Nếu không đưa ra mã hóa cũng như lỗi, thì def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 09 trả về , đây là biểu diễn chuỗi đối tượng "không chính thức" hoặc có thể in được. Đối với các đối tượng chuỗi, đây chính là chuỗi. Nếu đối tượng không có phương thức, thì quay lại quay lại

Nếu ít nhất một mã hóa hoặc lỗi được đưa ra, đối tượng phải là một (e. g. hoặc là ). Trong trường hợp này, nếu đối tượng là một (hoặc ) đối tượng, thì def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 18 tương đương với. Otherwise, the bytes object underlying the buffer object is obtained before calling . See and for information on buffer objects

Passing a object to without the encoding or errors arguments falls under the first case of returning the informal string representation (see also the command-line option to Python). For example

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 9

For more information on the >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 22 class and its methods, see and the section below. To output formatted strings, see the and sections. In addition, see the section

String Methods

Strings implement all of the sequence operations, along with the additional methods described below

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see , and ) and the other based on C def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 26 style formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the cases it can handle ()

The section of the standard library covers a number of other modules that provide various text related utilities (including regular expression support in the module)

str. capitalize()

Return a copy of the string with its first character capitalized and the rest lowercased

Changed in version 3. 8. The first character is now put into titlecase rather than uppercase. This means that characters like digraphs will only have their first letter capitalized, instead of the full character.

str. casefold()

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions in a string. For example, the German lowercase letter def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 28 is equivalent to def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 29. Since it is already lowercase, would do nothing to def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 28; converts it to def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 29

The casefolding algorithm is described in section 3. 13 of the Unicode Standard

New in version 3. 3

str. center(width[ , fillchar])

Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13

str. count(sub[ , start[ , end]])

Trả về số lần xuất hiện không trùng lặp của chuỗi con sub trong phạm vi [bắt đầu, kết thúc]. Optional arguments start and end are interpreted as in slice notation

If sub is empty, returns the number of empty strings between characters which is the length of the string plus one

str. encode(encoding='utf-8' , errors='strict')

Return the string encoded to

encoding defaults to def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 36; see for possible values

errors controls how encoding errors are handled. If def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 37 (the default), a exception is raised. Other possible values are def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 39, def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 40, def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 41, def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 42 and any other name registered via . See for details

For performance reasons, the value of errors is not checked for validity unless an encoding error actually occurs, is enabled or a is used

Changed in version 3. 1. Added support for keyword arguments.

Changed in version 3. 9. The value of the errors argument is now checked in and in .

str. endswith(suffix[ , start[ , end]])

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if the string ends with the specified suffix, otherwise return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

str. expandtabs(tabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string is examined character by character. If the character is a tab (def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 46), one or more space characters are inserted in the result until the current column is equal to the next tab position. (The tab character itself is not copied. ) If the character is a newline (def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 47) or return (def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 48), it is copied and the current column is reset to zero. Any other character is copied unchanged and the current column is incremented by one regardless of how the character is represented when printed

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 0

str. find(sub[ , start[ , end]])

Return the lowest index in the string where substring sub is found within the slice def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 49. Optional arguments start and end are interpreted as in slice notation. Return >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 41 if sub is not found

Note

The method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the operator

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 1

str. format(*args , **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text or replacement fields delimited by braces def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 50. Each replacement field contains either the numeric index of a positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced with the string value of the corresponding argument

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 2

See for a description of the various formatting options that can be specified in format strings

Note

When formatting a number (, , , and subclasses) with the def bit_count(self): return bin(self).count("1") 51 type (ex. def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 59), the function temporarily sets the def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 60 locale to the def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 61 locale to decode def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 62 and def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 63 fields of def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 64 if they are non-ASCII or longer than 1 byte, and the def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 61 locale is different than the def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 60 locale. Thay đổi tạm thời này ảnh hưởng đến các chủ đề khác

Changed in version 3. 7. When formatting a number with the def bit_count(self): return bin(self).count("1") 51 type, the function sets temporarily the def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 60 locale to the def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 61 locale in some cases.

str. format_map(mapping)

Similar to def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 70, except that def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 71 is used directly and not copied to a . This is useful if for example def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 71 is a dict subclass

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 3

Mới trong phiên bản 3. 2

str. index(sub[ , start[ , end]])

Thích , nhưng tăng khi không tìm thấy chuỗi con

str. isalnum()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all characters in the string are alphanumeric and there is at least one character, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. A character def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 78 is alphanumeric if one of the following returns def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56. def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 80, def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 81, def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 82, or def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 83

str. isalpha()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all characters in the string are alphabetic and there is at least one character, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. Các ký tự chữ cái là những ký tự được định nghĩa trong cơ sở dữ liệu ký tự Unicode là “Chữ cái”, tôi. e. , những người có thuộc tính danh mục chung là một trong số “Lm”, “Lt”, “Lu”, “Ll”, hoặc “Lo”. Note that this is different from the “Alphabetic” property defined in the Unicode Standard

str. isascii()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if the string is empty or all characters in the string are ASCII, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. ASCII characters have code points in the range U+0000-U+007F

New in version 3. 7

str. isdecimal()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all characters in the string are decimal characters and there is at least one character, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. Decimal characters are those that can be used to form numbers in base 10, e. g. U+0660, ARABIC-INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”

str. isdigit()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all characters in the string are digits and there is at least one character, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. Digits include decimal characters and digits that need special handling, such as the compatibility superscript digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers. Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal

str. isidentifier()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if the string is a valid identifier according to the language definition, section

Call to test whether string def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 94 is a reserved identifier, such as and

Example

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 4

str. islower()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all cased characters in the string are lowercase and there is at least one cased character, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise

str. isnumeric()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all characters in the string are numeric characters, and there is at least one character, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e. g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric

str. isprintable()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all characters in the string are printable or the string is empty, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. Các ký tự không in được là những ký tự được xác định trong cơ sở dữ liệu ký tự Unicode là “Khác” hoặc “Dấu phân cách”, ngoại trừ khoảng trống ASCII (0x20) được coi là có thể in được. (Note that printable characters in this context are those which should not be escaped when is invoked on a string. It has no bearing on the handling of strings written to or . )

str. isspace()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if there are only whitespace characters in the string and there is at least one character, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise

A character is whitespace if in the Unicode character database (see ), either its general category is >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 09 (“Separator, space”), or its bidirectional class is one of >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 10, >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 11, or >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 12

str. istitle()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if the string is a titlecased string and there is at least one character, for example uppercase characters may only follow uncased characters and lowercase characters only cased ones. Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise

str. isupper()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all cased characters in the string are uppercase and there is at least one cased character, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 5

str. join(iterable)

Return a string which is the concatenation of the strings in iterable. A will be raised if there are any non-string values in iterable, including objects. The separator between elements is the string providing this method

str. ljust(width[ , fillchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13

str. lower()

Return a copy of the string with all the cased characters converted to lowercase

The lowercasing algorithm used is described in section 3. 13 of the Unicode Standard

str. lstrip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, the chars argument defaults to removing whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 6

See for a method that will remove a single prefix string rather than all of a set of characters. For example

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 7

static str. maketrans(x[ , y[ , z]])

This static method returns a translation table usable for

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings of length 1) to Unicode ordinals, strings (of arbitrary lengths) or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31. Character keys will then be converted to ordinals

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose characters will be mapped to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31 in the result

str. partition(sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings

str. removeprefix(prefix , /)

If the string starts with the prefix string, return >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 25. Otherwise, return a copy of the original string

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 8

Mới trong phiên bản 3. 9

str. removesuffix(suffix , /)

If the string ends with the suffix string and that suffix is not empty, return >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 26. Otherwise, return a copy of the original string

>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 9

Mới trong phiên bản 3. 9

str. replace(old , new[ , count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

str. rfind(sub[ , start[ , end]])

Return the highest index in the string where substring sub is found, such that sub is contained within def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 49. Optional arguments start and end are interpreted as in slice notation. Return >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 41 on failure

str. rindex(sub[ , start[ , end]])

Like but raises when the substring sub is not found

str. rjust(width[ , fillchar])

Trả về chuỗi được căn phải trong một chuỗi có chiều dài chiều rộng. Padding is done using the specified fillchar (default is an ASCII space). The original string is returned if width is less than or equal to >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13

str. phân vùng(sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty strings, followed by the string itself

str. rsplit(sep=None , maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, any whitespace string is a separator. Except for splitting from the right, behaves like which is described in detail below

str. rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, the chars argument defaults to removing whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

def bit_count(self): return bin(self).count("1") 0

See for a method that will remove a single suffix string rather than all of a set of characters. For example

def bit_count(self): return bin(self).count("1") 1

str. split(sep=None , maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done (thus, the list will have at most >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 37 elements). If maxsplit is not specified or >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 41, then there is no limit on the number of splits (all possible splits are made)

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for example, >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 39 returns >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 40). The sep argument may consist of multiple characters (for example, >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 41 returns >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 42). Splitting an empty string with a specified separator returns >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 43

For example

def bit_count(self): return bin(self).count("1") 2

If sep is not specified or is def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, a different splitting algorithm is applied. runs of consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with a def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31 separator returns def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 49

For example

def bit_count(self): return bin(self).count("1") 3

str. splitlines(keepends=False)

Trả về danh sách các dòng trong chuỗi, phá vỡ ranh giới dòng. Line breaks are not included in the resulting list unless keepends is given and true

This method splits on the following line boundaries. In particular, the boundaries are a superset of

Representation

Description

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 47

Line Feed

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 48

Carriage Return

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 49

Carriage Return + Line Feed

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 50 or >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 51

Line Tabulation

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 52 or >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 53

Form Feed

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 54

File Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 55

Group Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 56

Record Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 57

Next Line (C1 Control Code)

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 58

Line Separator

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 59

Paragraph Separator

Changed in version 3. 2. >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 50 and >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 52 added to list of line boundaries.

For example

def bit_count(self): return bin(self).count("1") 4

Unlike when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

def bit_count(self): return bin(self).count("1") 5

For comparison, >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 63 gives

def bit_count(self): return bin(self).count("1") 6

str. startswith(prefix[ , start[ , end]])

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if string starts with the prefix, otherwise return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38. prefix can also be a tuple of prefixes to look for. With optional start, test string beginning at that position. With optional end, stop comparing string at that position

str. strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped

def bit_count(self): return bin(self).count("1") 7

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed from the leading end until reaching a string character that is not contained in the set of characters in chars. A similar action takes place on the trailing end. For example

def bit_count(self): return bin(self).count("1") 8

str. swapcase()

Trả về một bản sao của chuỗi với các ký tự hoa được chuyển đổi thành chữ thường và ngược lại. Note that it is not necessarily true that >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 67

str. title()

Return a titlecased version of the string where words start with an uppercase character and the remaining characters are lowercase

For example

def bit_count(self): return bin(self).count("1") 9

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 0

The function does not have this problem, as it splits words on spaces only

Alternatively, a workaround for apostrophes can be constructed using regular expressions

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 1

str. translate(table)

Return a copy of the string in which each character has been mapped through the given translation table. The table must be an object that implements indexing via >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 69, typically a or . When indexed by a Unicode ordinal (an integer), the table object can do any of the following. return a Unicode ordinal or a string, to map the character to one or more other characters; return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, to delete the character from the return string; or raise a exception, to map the character to itself

You can use to create a translation map from character-to-character mappings in different formats

See also the module for a more flexible approach to custom character mappings

str. upper()

Return a copy of the string with all the cased characters converted to uppercase. Note that >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 74 might be def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 if def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 94 contains uncased characters or if the Unicode category of the resulting character(s) is not “Lu” (Letter, uppercase), but e. g. “Lt” (Letter, titlecase)

The uppercasing algorithm used is described in section 3. 13 của Tiêu chuẩn Unicode

str. zfill(chiều rộng)

Return a copy of the string left filled with ASCII >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 77 digits to make a string of length width. A leading sign prefix (>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 78/>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 79) is handled by inserting the padding after the sign character rather than before. The original string is returned if width is less than or equal to >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13

For example

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 2

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 26-style String Formatting

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such as failing to display tuples and dictionaries correctly). Using the newer , the interface, or may help avoid these errors. Each of these alternatives provides their own trade-offs and benefits of simplicity, flexibility, and/or extensibility

String objects have one unique built-in operation. the >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 83 operator (modulo). This is also known as the string formatting or interpolation operator. Given >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 84 (where format is a string), >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 83 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 86 in the C language

If format requires a single argument, values may be a single non-tuple object. Otherwise, values must be a tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary)

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 87 character, which marks the start of the specifier

  2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 88)

  3. Conversion flags (optional), which affect the result of some conversion types

  4. Minimum field width (optional). If specified as an >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 89 (asterisk), the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision (optional), given as a >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 90 (dot) followed by the precision. If specified as >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 89 (an asterisk), the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier (optional)

  7. Conversion type

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a parenthesised mapping key into that dictionary inserted immediately after the >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 87 character. The mapping key selects the value to be formatted from the mapping. For example

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 3

In this case no >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 00 specifiers may occur in a format (since they require a sequential parameter list)

The conversion flag characters are

Lá cờ

Nghĩa

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 94

The value conversion will use the “alternate form” (where defined below)

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 77

The conversion will be zero padded for numeric values

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 79

The converted value is left adjusted (overrides the >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 77 conversion if both are given)

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 98

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 78

A sign character (>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 78 or >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 79) will precede the conversion (overrides a “space” flag)

A length modifier (def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 02, def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 03, or def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 04) may be present, but is ignored as it is not necessary for Python – so e. g. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 05 is identical to def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 06

The conversion types are

Conversion

Nghĩa

ghi chú

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 07

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 08

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 09

Signed octal value

(1)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 10

Obsolete type – it is identical to def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 07

(6)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 12

Signed hexadecimal (lowercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 13

Signed hexadecimal (uppercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 14

Floating point exponential format (lowercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 15

Floating point exponential format (uppercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 16

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 17

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 18

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 19

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 20

Single character (accepts integer or single character string)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 21

String (converts any Python object using )

(5)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 23

String (converts any Python object using )

(5)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 25

String (converts any Python object using )

(5)

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 87

No argument is converted, results in a >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 87 character in the result

ghi chú

  1. The alternate form causes a leading octal specifier (def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 29) to be inserted before the first digit

  2. The alternate form causes a leading def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 30 or def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 31 (depending on whether the def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 12 or def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 13 format was used) to be inserted before the first digit

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 34, the output is truncated to def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 34 characters

  6. See PEP 237

Since Python strings have an explicit length, def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 36 conversions do not assume that def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 37 is the end of the string

Changed in version 3. 1. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 38 conversions for numbers whose absolute value is over 1e50 are no longer replaced by def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 39 conversions.

Binary Sequence Types — , ,

The core built-in types for manipulating binary data are and . They are supported by which uses the to access the memory of other binary objects without needing to make a copy

The module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision floating values

Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and are closely related to string objects in a variety of other ways

class bytes([source[ , encoding[ , errors]]])

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 47 prefix is added

  • Single quotes. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 48

  • Double quotes. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 49

  • Triple quoted. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 50, def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 51

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any binary values over 127 must be entered into bytes literals using the appropriate escape sequence

As with string literals, bytes literals may also use a >>> (65).to_bytes() b'A' 62 prefix to disable processing of escape sequences. See for more about the various forms of bytes literal, including supported escape sequences

Mặc dù các ký tự byte và biểu diễn dựa trên văn bản ASCII, nhưng các đối tượng byte thực sự hoạt động giống như các chuỗi số nguyên bất biến, với mỗi giá trị trong chuỗi bị hạn chế sao cho def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 53 (cố gắng vi phạm hạn chế này sẽ kích hoạt). This is done deliberately to emphasise that while many binary formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms, this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary data formats that are not ASCII compatible will usually lead to data corruption)

Ngoài các dạng chữ, các đối tượng byte có thể được tạo theo một số cách khác

  • Một đối tượng byte được điền bằng 0 có độ dài được chỉ định. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 55

  • From an iterable of integers. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 56

  • Copying existing binary data via the buffer protocol. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 57

Also see the built-in

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytes type has an additional class method to read data in that format

classmethod fromhex(string)

This class method returns a bytes object, decoding the given string object. The string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 4

Changed in version 3. 7. now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation

hex([sep[ , bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the instance

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 5

If you want to make the hex string easier to read, you can specify a single character separator sep parameter to include in the output. By default, this separator will be included between each byte. A second optional bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the right, negative values from the left

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 6

New in version 3. 5

Changed in version 3. 8. now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 61 will be an integer, while def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 62 will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string of length 1)

The representation of bytes objects uses the literal format (def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 63) since it is often more useful than e. g. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 64. You can always convert a bytes object into a list of integers using def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 65

Bytearray Objects

objects are a mutable counterpart to objects

class bytearray([source[ , encoding[ , errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the constructor

  • Creating an empty instance. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 68

  • Creating a zero-filled instance with a given length. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 69

  • From an iterable of integers. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 70

  • Copying existing binary data via the buffer protocol. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 71

As bytearray objects are mutable, they support the sequence operations in addition to the common bytes and bytearray operations described in

Also see the built-in

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used format for describing binary data. Accordingly, the bytearray type has an additional class method to read data in that format

classmethod fromhex(string)

This class method returns bytearray object, decoding the given string object. The string must contain two hexadecimal digits per byte, with ASCII whitespace being ignored

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 7

Changed in version 3. 7. now skips all ASCII whitespace in the string, not just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation

hex([sep[ , bytes_per_sep]])

Return a string object containing two hexadecimal digits for each byte in the instance

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 8

New in version 3. 5

Changed in version 3. 8. Similar to , now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 61 will be an integer, while def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 62 will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 78) since it is often more useful than e. g. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 79. You can always convert a bytearray object into a list of integers using def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 65

Bytes and Bytearray Operations

Both bytes and bytearray objects support the sequence operations. They interoperate not just with operands of the same type, but with any . Due to this flexibility, they can be freely mixed in operations without causing errors. However, the return type of the result may depend on the order of operands

Note

The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on strings don’t accept bytes as their arguments. For example, you have to write

>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 9

and

>>> (65).to_bytes() b'A' 0

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be avoided when working with arbitrary binary data. These restrictions are covered below

Note

Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format may lead to data corruption

The following methods on bytes and bytearray objects can be used with arbitrary binary data

bytes. count(sub[ , start[ , end]])bytearray. count(sub[ , start[ , end]])

Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation

The subsequence to search for may be any or an integer in the range 0 to 255

If sub is empty, returns the number of empty slices between characters which is the length of the bytes object plus one

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. removeprefix(prefix , / . )bytearray.removeprefix(prefix , /)

If the binary data starts with the prefix string, return def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 81. Otherwise, return a copy of the original binary data

>>> (65).to_bytes() b'A' 1

The prefix may be any

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

Mới trong phiên bản 3. 9

bytes. removesuffix(suffix , /)bytearray. removesuffix(suffix , /)

If the binary data ends with the suffix string and that suffix is not empty, return def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 82. Otherwise, return a copy of the original binary data

>>> (65).to_bytes() b'A' 2

The suffix may be any

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

Mới trong phiên bản 3. 9

bytes. decode(encoding='utf-8' , errors='strict')bytearray. decode(encoding='utf-8' , errors='strict')

Return the bytes decoded to a

encoding defaults to def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 36; see for possible values

errors controls how decoding errors are handled. If def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 37 (the default), a exception is raised. Other possible values are def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 39, def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 40, and any other name registered via . See for details

For performance reasons, the value of errors is not checked for validity unless a decoding error actually occurs, is enabled or a is used

Note

Passing the encoding argument to allows decoding any directly, without needing to make a temporary >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 23 or >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 24 object

Changed in version 3. 1. Added support for keyword arguments.

Changed in version 3. 9. The value of the errors argument is now checked in and in .

bytes. endswith(suffix[ , start[ , end]])bytearray. endswith(suffix[ , start[ , end]])

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if the binary data ends with the specified suffix, otherwise return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The suffix(es) to search for may be any

byte. find(sub[ , start[ , end]])bytearray. find(sub[ , start[ , end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 49. Optional arguments start and end are interpreted as in slice notation. Return >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 41 if sub is not found

The subsequence to search for may be any or an integer in the range 0 to 255

Note

The method should be used only if you need to know the position of sub. To check if sub is a substring or not, use the operator

>>> (65).to_bytes() b'A' 3

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. index(sub[ , start[ , end]])bytearray. index(sub[ , start[ , end]])

Like , but raise when the subsequence is not found

The subsequence to search for may be any or an integer in the range 0 to 255

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join(iterable)bytearray. join(iterable)

Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A will be raised if there are any values in iterable that are not , including objects. The separator between elements is the contents of the bytes or bytearray object providing this method

static bytes. maketrans(from , to)static bytearray. maketrans(from , to)

This static method returns a translation table usable for that will map each character in from into the character at the same position in to; from and to must both be and have the same length

Mới trong phiên bản 3. 1

bytes. partition(sep)bytearray. partition(sep)

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects

Dấu phân cách để tìm kiếm có thể là bất kỳ

bytes. replace(old , new[ , count])bytearray. replace(old , new[ , count])

Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional argument count is given, only the first count occurrences are replaced

The subsequence to search for and its replacement may be any

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rfind(sub[ , start[ , end]])bytearray. rfind(sub[ , start[ , end]])

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 49. Optional arguments start and end are interpreted as in slice notation. Return >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 41 on failure

The subsequence to search for may be any or an integer in the range 0 to 255

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rindex(sub[ , start[ , end]])bytearray. rindex(sub[ , start[ , end]])

Like but raises when the subsequence sub is not found

The subsequence to search for may be any or an integer in the range 0 to 255

Changed in version 3. 3. Also accept an integer in the range 0 to 255 as the subsequence.

bytes. rpartition(sep)bytearray. rpartition(sep)

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence

Dấu phân cách để tìm kiếm có thể là bất kỳ

bytes. startswith(prefix[ , start[ , end]])bytearray. startswith(prefix[ , start[ , end]])

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if the binary data starts with the specified prefix, otherwise return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38. prefix can also be a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position

The prefix(es) to search for may be any

bytes. translate(table , / , delete=b'')bytearray. translate(table , / , delete=b'')

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes object of length 256

You can use the method to create a translation table

Set the table argument to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31 for translations that only delete characters

>>> (65).to_bytes() b'A' 4

Changed in version 3. 6. delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII compatible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that all of the bytearray methods in this section do not operate in place, and instead produce new objects

bytes. center(width[ , fillbyte])bytearray. center(width[ , fillbyte])

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte (default is an ASCII space). For objects, the original sequence is returned if width is less than or equal to >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. ljust(width[ , fillbyte])bytearray. ljust(width[ , fillbyte])

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified fillbyte (default is an ASCII space). For objects, the original sequence is returned if width is less than or equal to >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. lstrip([chars])bytearray. lstrip([ký tự])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped

>>> (65).to_bytes() b'A' 5

The binary sequence of byte values to remove may be any . See for a method that will remove a single prefix string rather than all of a set of characters. For example

>>> (65).to_bytes() b'A' 6

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rjust(width[ , fillbyte])bytearray. rjust(width[ , fillbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified fillbyte (default is an ASCII space). For objects, the original sequence is returned if width is less than or equal to >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 13

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. rsplit(sep=None , maxsplit=- 1)bytearray. rsplit(sep=None , maxsplit=- 1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, any subsequence consisting solely of ASCII whitespace is a separator. Except for splitting from the right, behaves like which is described in detail below

bytes. rstrip([ký tự] . )bytearray.rstrip([chars])

Trả về một bản sao của chuỗi đã xóa các byte theo sau được chỉ định. The chars argument is a binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually used with ASCII characters. If omitted or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, the chars argument defaults to removing ASCII whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped

>>> (65).to_bytes() b'A' 7

The binary sequence of byte values to remove may be any . See for a method that will remove a single suffix string rather than all of a set of characters. For example

>>> (65).to_bytes() b'A' 8

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. tách(sep=Không có . , maxsplit=- 1)bytearray.tách(sep=Không có, maxsplit=- 1)

Tách chuỗi nhị phân thành các chuỗi con cùng loại, sử dụng sep làm chuỗi phân cách. Nếu maxsplit được đưa ra và không âm, thì tối đa việc tách maxsplit được thực hiện (do đó, danh sách sẽ có tối đa >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 37 phần tử). Nếu maxsplit không được chỉ định hoặc là >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 41, thì không có giới hạn về số lần phân tách (tất cả các lần phân tách có thể được thực hiện)

Nếu sep được đưa ra, các dấu phân cách liên tiếp không được nhóm lại với nhau và được coi là phân cách các chuỗi con trống (ví dụ: >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 27 trả về >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 28). Đối số sep có thể bao gồm một chuỗi nhiều byte (ví dụ: >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 29 trả về >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 30). Việc tách một chuỗi trống với một dấu tách được chỉ định trả về >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 31 hoặc >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 32 tùy thuộc vào loại đối tượng được tách. Đối số sep có thể là bất kỳ

For example

>>> (65).to_bytes() b'A' 9

Nếu sep không được chỉ định hoặc là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, một thuật toán phân tách khác sẽ được áp dụng. các khoảng trắng ASCII liên tiếp được coi là một dấu phân cách duy nhất và kết quả sẽ không chứa chuỗi trống ở đầu hoặc cuối nếu chuỗi có khoảng trắng ở đầu hoặc cuối. Do đó, việc tách một chuỗi trống hoặc một chuỗi chỉ bao gồm khoảng trắng ASCII mà không có dấu phân cách được chỉ định sẽ trả về def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 49

For example

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 0

byte. dải([ký tự] . )bytearray.dải([ký tự])

Trả về một bản sao của chuỗi đã xóa các byte đầu và cuối được chỉ định. Đối số ký tự là một chuỗi nhị phân chỉ định tập hợp các giá trị byte sẽ bị xóa - tên đề cập đến thực tế là phương thức này thường được sử dụng với các ký tự ASCII. Nếu bỏ qua hoặc def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, đối số ký tự mặc định xóa khoảng trắng ASCII. Đối số ký tự không phải là tiền tố hoặc hậu tố;

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 1

Chuỗi nhị phân của các giá trị byte cần loại bỏ có thể là bất kỳ

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

Các phương thức sau trên các đối tượng byte và bytearray giả sử sử dụng các định dạng nhị phân tương thích ASCII và không được áp dụng cho dữ liệu nhị phân tùy ý. Lưu ý rằng tất cả các phương thức bytearray trong phần này không hoạt động tại chỗ mà thay vào đó tạo ra các đối tượng mới

byte. viết hoa()dãy byte. viết hoa()

Trả về một bản sao của chuỗi với mỗi byte được hiểu là ký tự ASCII và byte đầu tiên được viết hoa và phần còn lại được viết thường. Các giá trị byte không phải ASCII được chuyển qua không thay đổi

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. tab mở rộng(kích thước tab=8 . )bytearray.tab mở rộng(kích thước tab=8)

Trả về một bản sao của chuỗi trong đó tất cả các ký tự tab ASCII được thay thế bằng một hoặc nhiều khoảng trắng ASCII, tùy thuộc vào cột hiện tại và kích thước tab đã cho. Vị trí tab xuất hiện ở mỗi byte kích thước tab (mặc định là 8, cung cấp vị trí tab tại các cột 0, 8, 16, v.v.). Để mở rộng chuỗi, cột hiện tại được đặt thành 0 và chuỗi được kiểm tra từng byte. Nếu byte là một ký tự tab ASCII (_______133_______36), một hoặc nhiều ký tự khoảng trắng sẽ được chèn vào kết quả cho đến khi cột hiện tại bằng với vị trí tab tiếp theo. (Bản thân ký tự tab không được sao chép. ) Nếu byte hiện tại là một dòng mới ASCII (>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 37) hoặc dấu xuống dòng (>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 38), nó sẽ được sao chép và cột hiện tại được đặt lại về 0. Bất kỳ giá trị byte nào khác được sao chép không thay đổi và cột hiện tại được tăng thêm một bất kể giá trị byte được biểu thị như thế nào khi in

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 2

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

byte. isalnum()bytearray. isalnum()

Trả về def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 nếu tất cả các byte trong chuỗi là ký tự ASCII theo thứ tự bảng chữ cái hoặc chữ số thập phân ASCII và chuỗi không trống, ngược lại là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38. Các ký tự ASCII theo bảng chữ cái là các giá trị byte trong chuỗi >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 41. ASCII decimal digits are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 42

For example

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 3

bytes. isalpha()bytearray. isalpha()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all bytes in the sequence are alphabetic ASCII characters and the sequence is not empty, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. Alphabetic ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 41

For example

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 4

bytes. isascii()bytearray. isascii()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if the sequence is empty or all bytes in the sequence are ASCII, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. ASCII bytes are in the range 0-0x7F

New in version 3. 7

bytes. isdigit()bytearray. isdigit()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. ASCII decimal digits are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 42

For example

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 5

bytes. islower()bytearray. islower()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII characters, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise

For example

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 6

Lowercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 53. Uppercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 54

bytes. isspace()bytearray. isspace()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if all bytes in the sequence are ASCII whitespace and the sequence is not empty, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. ASCII whitespace characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 57 (space, tab, newline, carriage return, vertical tab, form feed)

bytes. istitle()bytearray. istitle()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if the sequence is ASCII titlecase and the sequence is not empty, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise. Xem để biết thêm chi tiết về định nghĩa của “titlecase”

For example

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 7

bytes. isupper()bytearray. isupper()

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase ASCII characters, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 otherwise

For example

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 8

Lowercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 53. Uppercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 54

bytes. lower()bytearray. lower()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding lowercase counterpart

For example

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 9

Lowercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 53. Uppercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 54

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. đường phân chia(keepends=Sai . )bytearray.splitlines(keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and true

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 0

Unlike when a delimiter string sep is given, this method returns an empty list for the empty string, and a terminal line break does not result in an extra line

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 1

bytes. swapcase()bytearray. swapcase()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart and vice-versa

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 2

Lowercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 53. Uppercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 54

Unlike , it is always the case that >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 71 for the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary Unicode code points

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. title()bytearray. title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and the remaining characters are lowercase. Uncased byte values are left unmodified

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 3

Lowercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 53. Uppercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 54. All other byte values are uncased

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 4

A workaround for apostrophes can be constructed using regular expressions

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 5

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. upper()bytearray. upper()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding uppercase counterpart

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 6

Lowercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 53. Uppercase ASCII characters are those byte values in the sequence >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 54

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

bytes. zfill(width)bytearray. zfill(chiều rộng)

Return a copy of the sequence left filled with ASCII >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 76 digits to make a sequence of length width. A leading sign prefix (>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 77/ >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 78) is handled by inserting the padding after the sign character rather than before. For objects, the original sequence is returned if width is less than or equal to >>> (-2.0).is_integer() True >>> (3.2).is_integer() False 80

For example

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 7

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order) 26-style Bytes Formatting

Note

The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary, wrap it in a tuple

Bytes objects (>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 23/>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 24) have one unique built-in operation. the >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 83 operator (modulo). This is also known as the bytes formatting or interpolation operator. Given >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 84 (where format is a bytes object), >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 83 conversion specifications in format are replaced with zero or more elements of values. The effect is similar to using the >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 86 in the C language

If format requires a single argument, values may be a single non-tuple object. Otherwise, values must be a tuple with exactly the number of items specified by the format bytes object, or a single mapping object (for example, a dictionary)

A conversion specifier contains two or more characters and has the following components, which must occur in this order

  1. The >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 87 character, which marks the start of the specifier

  2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 88)

  3. Conversion flags (optional), which affect the result of some conversion types

  4. Minimum field width (optional). If specified as an >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 89 (asterisk), the actual width is read from the next element of the tuple in values, and the object to convert comes after the minimum field width and optional precision

  5. Precision (optional), given as a >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 90 (dot) followed by the precision. If specified as >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 89 (an asterisk), the actual precision is read from the next element of the tuple in values, and the value to convert comes after the precision

  6. Length modifier (optional)

  7. Conversion type

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include a parenthesised mapping key into that dictionary inserted immediately after the >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 87 character. The mapping key selects the value to be formatted from the mapping. For example

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 8

In this case no >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 00 specifiers may occur in a format (since they require a sequential parameter list)

The conversion flag characters are

Lá cờ

Nghĩa

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 94

The value conversion will use the “alternate form” (where defined below)

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 77

The conversion will be zero padded for numeric values

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 79

The converted value is left adjusted (overrides the >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 77 conversion if both are given)

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 98

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 78

A sign character (>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 78 or >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 79) will precede the conversion (overrides a “space” flag)

A length modifier (def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 02, def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 03, or def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 04) may be present, but is ignored as it is not necessary for Python – so e. g. def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 05 is identical to def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 06

The conversion types are

Conversion

Nghĩa

ghi chú

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 07

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 08

Signed integer decimal

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 09

Signed octal value

(1)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 10

Obsolete type – it is identical to def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 07

(số 8)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 12

Signed hexadecimal (lowercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 13

Signed hexadecimal (uppercase)

(2)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 14

Floating point exponential format (lowercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 15

Floating point exponential format (uppercase)

(3)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 16

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 17

Floating point decimal format

(3)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 18

Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 19

Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise

(4)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 20

Single byte (accepts integer or single byte objects)

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 022

Bytes (any object that follows the or has def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 023)

(5)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 23

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 23 is an alias for def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 022 and should only be used for Python2/3 code bases

(6)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 25

Bytes (converts any Python object using def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 028)

(5)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 21

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 21 is an alias for def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 25 and should only be used for Python2/3 code bases

(7)

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 87

No argument is converted, results in a >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 87 character in the result

ghi chú

  1. The alternate form causes a leading octal specifier (def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 29) to be inserted before the first digit

  2. The alternate form causes a leading def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 30 or def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 31 (depending on whether the def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 12 or def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 13 format was used) to be inserted before the first digit

  3. The alternate form causes the result to always contain a decimal point, even if no digits follow it

    The precision determines the number of digits after the decimal point and defaults to 6

  4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be

    The precision determines the number of significant digits before and after the decimal point and defaults to 6

  5. If precision is def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 34, the output is truncated to def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 34 characters

  6. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 041 is deprecated, but will not be removed during the 3. x series

  7. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 042 is deprecated, but will not be removed during the 3. x series

  8. See PEP 237

Note

The bytearray version of this method does not operate in place - it always produces a new object, even if no changes were made

See also

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3. 5

Memory Views

objects allow Python code to access the internal data of an object that supports the without copying

class memoryview(object)

Create a that references object. object must support the buffer protocol. Built-in objects that support the buffer protocol include and

A has the notion of an element, which is the atomic memory unit handled by the originating object. For many simple types such as and , an element is a single byte, but other types such as may have bigger elements

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 051 is equal to the length of . If def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 053, the length is 1. If def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 054, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to the length of the nested list representation of the view. The attribute will give you the number of bytes in a single element

A supports slicing and indexing to expose its data. One-dimensional slicing will result in a subview

>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680 9

If is one of the native format specifiers from the module, indexing with an integer or a tuple of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can be indexed with the empty tuple

Here is an example with a non-byte format

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 0

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is not allowed

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 1

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The hash is defined as def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 059

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 2

Changed in version 3. 3. One-dimensional memoryviews can now be sliced. One-dimensional memoryviews with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3. 4. memoryview is now registered automatically with

Changed in version 3. 5. memoryviews can now be indexed with tuple of integers.

has several methods

__eq__(exporter)

A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding values are equal when the operands’ respective format codes are interpreted using syntax

For the subset of format strings currently supported by , def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 065 and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 066 are equal if def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 067

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 3

If either format string is not supported by the module, then the objects will always compare as unequal (even if the format strings and buffer contents are identical)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 4

Note that, as with floating point numbers, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 069 does not imply def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 070 for memoryview objects

Changed in version 3. 3. Previous versions compared the raw memory disregarding the item format and the logical array structure.

tobytes(order='C')

Return the data in the buffer as a bytestring. This is equivalent to calling the constructor on the memoryview

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 5

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted to bytes. supports all format strings, including those that are not in module syntax

New in version 3. 8. order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory. Đặc biệt, thứ tự Fortran trong bộ nhớ được giữ nguyên. Đối với các chế độ xem không liền kề, dữ liệu được chuyển đổi thành C trước. order=None giống với order=’C’.

hex([sep[ , bytes_per_sep]])

Trả về một đối tượng chuỗi chứa hai chữ số thập lục phân cho mỗi byte trong bộ đệm

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 6

New in version 3. 5

Changed in version 3. 8. Similar to , now supports optional sep and bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist()

Trả về dữ liệu trong bộ đệm dưới dạng danh sách các phần tử

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 7

Changed in version 3. 3. now supports all single character native formats in module syntax as well as multi-dimensional representations.

toreadonly()

Return a readonly version of the memoryview object. The original memoryview object is unchanged

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 8

Mới trong phiên bản 3. 8

release()

Release the underlying buffer exposed by the memoryview object. Many objects take special actions when a view is held on them (for example, a would temporarily forbid resizing); therefore, calling release() is handy to remove these restrictions (and free any dangling resources) as soon as possible

After this method has been called, any further operation on the view raises a (except itself which can be called multiple times)

def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 9

The context management protocol can be used for a similar effect, using the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 081 statement

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 0

Mới trong phiên bản 3. 2

cast(format[ , shape])

Cast a memoryview to a new format or shape. shape defaults to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 082, which means that the result view will be one-dimensional. The return value is a new memoryview, but the buffer itself is not copied. Supported casts are 1D -> C- and C-contiguous -> 1D

Định dạng đích được giới hạn ở định dạng gốc một phần tử theo cú pháp. One of the formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the original length

Cast 1D/long to 1D/unsigned bytes

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 1

Cast 1D/unsigned bytes to 1D/char

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 2

Cast 1D/bytes to 3D/ints to 1D/signed char

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 3

Cast 1D/unsigned long to 2D/unsigned long

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 4

New in version 3. 3

Changed in version 3. 5. The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available

obj

The underlying object of the memoryview

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 5

New in version 3. 3

nbytes

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 084. This is the amount of space in bytes that the array would use in a contiguous representation. It is not necessarily equal to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 085

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 6

Multi-dimensional arrays

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 7

New in version 3. 3

readonly

A bool indicating whether the memory is read only

format

A string containing the format (in module style) for each element in the view. A memoryview can be created from exporters with arbitrary format strings, but some methods (e. g. ) are restricted to native single element formats

Changed in version 3. 3. format def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 088 is now handled according to the struct module syntax. This means that def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 089.

itemsize

The size in bytes of each element of the memoryview

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 8

ndim

An integer indicating how many dimensions of a multi-dimensional array the memory represents

shape

A tuple of integers the length of giving the shape of the memory as an N-dimensional array

Changed in version 3. 3. An empty tuple instead of def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31 when ndim = 0.

strides

A tuple of integers the length of giving the size in bytes to access each element for each dimension of the array

Changed in version 3. 3. An empty tuple instead of def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31 when ndim = 0.

suboffsets

Used internally for PIL-style arrays. The value is informational only

c_contiguous

A bool indicating whether the memory is C-

New in version 3. 3

f_contiguous

A bool indicating whether the memory is Fortran

New in version 3. 3

contiguous

A bool indicating whether the memory is

New in version 3. 3

Set Types — ,

A set object is an unordered collection of distinct objects. Common uses include membership testing, removing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric difference. (Đối với các bộ chứa khác, hãy xem các lớp , , và tích hợp sẵn và mô-đun. )

Like other collections, sets support def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 100, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 101, and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 102. Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other sequence-like behavior

There are currently two built-in set types, and . The type is mutable — the contents can be changed using methods like def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 106 and >>> (65).to_bytes() b'A' 01. Since it is mutable, it has no hash value and cannot be used as either a dictionary key or as an element of another set. The type is immutable and — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for example. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 109, in addition to the constructor

The constructors for both classes work the same

class set([iterable])class frozenset([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be . To represent sets of sets, the inner sets must be objects. If iterable is not specified, a new empty set is returned

Sets can be created by several means

  • Use a comma-separated list of elements within braces. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 109

  • Use a set comprehension. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 113

  • Use the type constructor. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 51, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 115, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 116

Instances of and provide the following operations

len(s)

Return the number of elements in set s (cardinality of s)

x in s

Test x for membership in s

x not in s

Test x for non-membership in s

isdisjoint(other)

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if the set has no elements in common with other. Sets are disjoint if and only if their intersection is the empty set

issubset(other)set other

Test whether the set is a proper superset of other, that is, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 121

union(*others)set . other . .

Trả về một tập hợp mới với các phần tử từ tập hợp và tất cả các phần tử khác

intersection(*others)set & other & .

Return a new set with elements common to the set and all others

difference(*others)set - other - .

Return a new set with elements in the set that are not in the others

symmetric_difference(other)set ^ other

Return a new set with elements in either the set or other but not both

copy()

Return a shallow copy of the set

Note, the non-operator versions of , , , , , and methods will accept any iterable as an argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes error-prone constructions like def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 128 in favor of the more readable def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 129

Both and support set to set comparisons. Two sets are equal if and only if every element of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first set is a proper subset of the second set (is a subset, but is not equal). Một tập hợp lớn hơn tập hợp khác khi và chỉ khi tập hợp đầu tiên là tập hợp lớn nhất của tập hợp thứ hai (là tập hợp phụ, nhưng không bằng nhau)

Instances of are compared to instances of based on their members. For example, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 134 returns def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 and so does def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 136

The subset and equality comparisons do not generalize to a total ordering function. For example, any two nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 138, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 139, or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 140

Since sets only define partial ordering (subset relationships), the output of the method is undefined for lists of sets

Set elements, like dictionary keys, must be

Binary operations that mix instances with return the type of the first operand. For example. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 144 returns an instance of

The following table lists operations available for that do not apply to immutable instances of

update(*others)set . = other . .

Update the set, adding elements from all others

intersection_update(*others)set &= other & .

Update the set, keeping only elements found in it and all others

difference_update(*others)set -= other . .

Update the set, removing elements found in others

symmetric_difference_update(other)set ^= other

Update the set, keeping only elements found in either set, but not in both

add(elem)

Add element elem to the set

remove(elem)

Remove element elem from the set. Raises if elem is not contained in the set

discard(elem)

Remove element elem from the set if it is present

pop()

Xóa và trả về một phần tử tùy ý khỏi tập hợp. Raises if the set is empty

clear()

Remove all elements from the set

Note, the non-operator versions of the , , , and methods will accept any iterable as an argument

Note, the elem argument to the >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 00, , and methods may be a set. To support searching for an equivalent frozenset, a temporary one is created from elem

Mapping Types —

A object maps values to arbitrary objects. Mappings are mutable objects. There is currently only one standard mapping type, the dictionary. (For other containers see the built-in , , and classes, and the module. )

A dictionary’s keys are almost arbitrary values. Values that are not , that is, values containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Values that compare equal (such as def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 55, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 163, and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56) can be used interchangeably to index the same dictionary entry

class dict(**kwargs)class dict(mapping , **kwargs)class dict(iterable , **kwargs)

Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword arguments

Dictionaries can be created by several means

  • Use a comma-separated list of def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 165 pairs within braces. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 166 or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 167

  • Use a dict comprehension. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 50, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 169

  • Use the type constructor. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 170, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 171, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 172

If no positional argument is given, an empty dictionary is created. Nếu một đối số vị trí được đưa ra và nó là một đối tượng ánh xạ, thì một từ điển sẽ được tạo với các cặp khóa-giá trị giống như đối tượng ánh xạ. Otherwise, the positional argument must be an object. Each item in the iterable must itself be an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding value in the new dictionary

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created from the positional argument. If a key being added is already present, the value from the keyword argument replaces the value from the positional argument

To illustrate, the following examples all return a dictionary equal to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 173

>>> (-2.0).is_integer() True >>> (3.2).is_integer() False 9

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers. Otherwise, any valid keys can be used

These are the operations that dictionaries support (and therefore, custom mapping types should support too)

list(d)

Return a list of all the keys used in the dictionary d

len(d)

Return the number of items in the dictionary d

d[key]

Return the item of d with key key. Raises a if key is not in the map

If a subclass of dict defines a method def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 175 and key is not present, the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 176 operation calls that method with the key key as argument. The def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 176 operation then returns or raises whatever is returned or raised by the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 178 call. No other operations or methods invoke def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 175. If def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 175 is not defined, is raised. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 175 must be a method; it cannot be an instance variable

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 00

The example above shows part of the implementation of . A different def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 184 method is used by

d[key] = value

Set def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 176 to value

del d[key]

Remove def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 176 from d. Raises a if key is not in the map

phím vào d

Trả lại def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 nếu d có khóa chính, ngược lại def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38

key not in d

Equivalent to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 191

iter(d)

Return an iterator over the keys of the dictionary. This is a shortcut for def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 192

clear()

Remove all items from the dictionary

copy()

Return a shallow copy of the dictionary

classmethod fromkeys(iterable[ , value])

Create a new dictionary with keys from iterable and values set to value

is a class method that returns a new dictionary. value defaults to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31. All of the values refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as an empty list. To get distinct values, use a instead

get(key[ , default])

Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31, so that this method never raises a

items()

Return a new view of the dictionary’s items (def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 197 pairs). See the

keys()

Return a new view of the dictionary’s keys. See the

pop(key[ , default])

If key is in the dictionary, remove it and return its value, else return default. If default is not given and key is not in the dictionary, a is raised

popitem()

Remove and return a def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 197 pair from the dictionary. Các cặp được trả lại theo thứ tự LIFO

is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictionary is empty, calling raises a

Changed in version 3. 7. LIFO order is now guaranteed. In prior versions, would return an arbitrary key/value pair.

reversed(d)

Return a reverse iterator over the keys of the dictionary. This is a shortcut for def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 204

Mới trong phiên bản 3. 8

setdefault(key[ , default])

If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default defaults to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31

update([other])

Update the dictionary with the key/value pairs from other, overwriting existing keys. Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31

accepts either another dictionary object or an iterable of key/value pairs (as tuples or other iterables of length two). If keyword arguments are specified, the dictionary is then updated with those key/value pairs. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 208

values()

Return a new view of the dictionary’s values. See the

An equality comparison between one def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 209 view and another will always return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38. This also applies when comparing def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 209 to itself

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 01

d . other

Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries. The values of other take priority when d and other share keys

Mới trong phiên bản 3. 9

d . = other

Update the dictionary d with keys and values from other, which may be either a or an of key/value pairs. The values of other take priority when d and other share keys

Mới trong phiên bản 3. 9

Dictionaries compare equal if and only if they have the same def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 197 pairs (regardless of ordering). Order comparisons (‘’) raise .

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after deletion are inserted at the end

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 02

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order. This behavior was an implementation detail of CPython from 3. 6.

Dictionaries and dictionary views are reversible

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 03

Changed in version 3. 8. Dictionaries are now reversible.

See also

can be used to create a read-only view of a

Dictionary view objects

The objects returned by , and are view objects. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes

Dictionary views can be iterated over to yield their respective data, and support membership tests

len(dictview)

Return the number of entries in the dictionary

iter(dictview)

Return an iterator over the keys, values or items (represented as tuples of def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 197) in the dictionary

Keys and values are iterated over in insertion order. This allows the creation of def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 220 pairs using . def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 222. Một cách khác để tạo danh sách tương tự là def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 223

Iterating views while adding or deleting entries in the dictionary may raise a or fail to iterate over all entries

Changed in version 3. 7. Dictionary order is guaranteed to be insertion order.

x in dictview

Return def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56 if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 197 tuple)

reversed(dictview)

Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse order of the insertion

Changed in version 3. 8. Dictionary views are now reversible.

dictview. mapping

Return a that wraps the original dictionary to which the view refers

Mới trong phiên bản 3. 10

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 197 pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since the entries are generally not unique. ) For set-like views, all of the operations defined for the abstract base class are available (for example, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 78, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 74, or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 232)

An example of dictionary view usage

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 04

Context Manager Types

Python’s statement supports the concept of a runtime context defined by a context manager. This is implemented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the statement body is executed and exited when the statement ends

contextmanager. __enter__()

Enter the runtime context and return either this object or another object related to the runtime context. The value returned by this method is bound to the identifier in the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 234 clause of statements using this context manager

An example of a context manager that returns itself is a . File objects return themselves from __enter__() to allow to be used as the context expression in a statement

An example of a context manager that returns a related object is the one returned by . These managers set the active decimal context to a copy of the original decimal context and then return the copy. This allows changes to be made to the current decimal context in the body of the statement without affecting code outside the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 081 statement

contextmanager. __exit__(exc_type , exc_val , exc_tb)

Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed. If an exception occurred while executing the body of the statement, the arguments contain the exception type, value and traceback information. Otherwise, all three arguments are def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31

Returning a true value from this method will cause the statement to suppress the exception and continue execution with the statement immediately following the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 081 statement. Otherwise the exception continues propagating after this method has finished executing. Exceptions that occur during execution of this method will replace any exception that occurred in the body of the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 081 statement

The exception passed in should never be reraised explicitly - instead, this method should return a false value to indicate that the method completed successfully and does not want to suppress the raised exception. Điều này cho phép mã quản lý bối cảnh dễ dàng phát hiện xem một phương thức có thực sự bị lỗi hay không

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially beyond their implementation of the context management protocol. Xem mô-đun để biết một số ví dụ

Python’s s and the decorator provide a convenient way to implement these protocols. Nếu một hàm tạo được trang trí bằng trình tạo trang trí, thì nó sẽ trả về trình quản lý bối cảnh thực hiện các phương thức và cần thiết, thay vì trình vòng lặp được tạo bởi hàm tạo không được trang trí

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API. Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible

Type Annotation Types — ,

The core built-in types for are and

Generic Alias Type

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 objects are generally created by a class. They are most often used with , such as or . For example, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 255 is a def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 object created by subscripting the def bit_count(self): return bin(self).count("1") 93 class with the argument . def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 objects are intended primarily for use with

Note

It is generally only possible to subscript a class if the class implements the special method

A def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 object acts as a proxy for a , implementing parameterized generics

For a container class, the argument(s) supplied to a of the class may indicate the type(s) of the elements an object contains. Ví dụ: def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 262 có thể được sử dụng trong chú thích loại để biểu thị một trong đó tất cả các phần tử đều thuộc loại

For a class which defines but is not a container, the argument(s) supplied to a subscription of the class will often indicate the return type(s) of one or more methods defined on an object. For example, can be used on both the data type and the data type

  • If def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 269, >>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3 82 will be a object where the return values of def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 271 and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 272 will both be of type . We can represent this kind of object in type annotations with the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 275

  • If def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 276, (note the def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n 47 for ), def bit_count(self): return bin(self).count("1") 31 will also be an instance of def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 280, but the return values of def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 281 and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 282 will both be of type . In type annotations, we would represent this variety of objects with def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 284

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 objects are instances of the class , which can also be used to create def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 objects directly

T[X, Y, . ]

Creates a def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 representing a type def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 289 parameterized by types X, Y, and more depending on the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 289 used. For example, a function expecting a containing elements

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 05

Another example for objects, using a , which is a generic type expecting two type parameters representing the key type and the value type. In this example, the function expects a >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 68 with keys of type and values of type

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 06

The builtin functions and do not accept def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 types for their second argument

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 07

The Python runtime does not enforce . This extends to generic types and their type parameters. When creating a container object from a def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252, the elements in the container are not checked against their type. For example, the following code is discouraged, but will run without errors

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 08

Furthermore, parameterized generics erase type parameters during object creation

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 09

Calling or on a generic shows the parameterized type

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 10

The method of generic containers will raise an exception to disallow mistakes like def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 304

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 11

However, such expressions are valid when are used. The index must have as many elements as there are type variable items in the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 object’s

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 12

Standard Generic Classes

The following standard library classes support parameterized generics. This list is non-exhaustive

Thuộc tính đặc biệt của def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 đối tượng

All parameterized generics implement special read-only attributes

genericalias. __origin__

This attribute points at the non-parameterized generic class

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 13

genericalias. __args__

This attribute is a (possibly of length 1) of generic types passed to the original of the generic class

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 14

genericalias. __parameters__

This attribute is a lazily computed tuple (possibly empty) of unique type variables found in def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 306

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 15

Note

A def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 252 object with parameters may not have correct def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 365 after substitution because is intended primarily for static type checking

genericalias. __unpacked__

A boolean that is true if the alias has been unpacked using the >>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03' 00 operator (see )

New in version 3. 11

See also

PEP 484 - Type Hints

Introducing Python’s framework for type annotations

PEP 585 - Type Hinting Generics In Standard Collections

Introducing the ability to natively parameterize standard-library classes, provided they implement the special class method

, and

Documentation on how to implement generic classes that can be parameterized at runtime and understood by static type-checkers

Mới trong phiên bản 3. 9

Loại liên minh

A union object holds the value of the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 371 (bitwise or) operation on multiple . These types are intended primarily for . The union type expression enables cleaner type hinting syntax compared to

X . Y . .

Defines a union object which holds types X, Y, and so forth. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 373 means either X or Y. It is equivalent to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 374. For example, the following function expects an argument of type or

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 16

union_object == other

Union objects can be tested for equality with other union objects. Details

  • Unions of unions are flattened

    def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 17

  • Redundant types are removed

    def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 18

  • When comparing unions, the order is ignored

    def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 19

  • It is compatible with

    def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 20

  • Optional types can be spelled as a union with def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31

    def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 21

isinstance(obj, union_object)issubclass(obj, union_object)

Calls to and are also supported with a union object

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 22

However, union objects containing cannot be used

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 23

The user-exposed type for the union object can be accessed from and used for checks. An object cannot be instantiated from the type

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 24

Note

The def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 383 method for type objects was added to support the syntax def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 373. If a metaclass implements def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 383, the Union may override it

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 25

See also

PEP 604 – PEP proposing the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 373 syntax and the Union type

Mới trong phiên bản 3. 10

Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations

mô-đun

Hoạt động đặc biệt duy nhất trên một mô-đun là truy cập thuộc tính. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 387, where m is a module and name accesses a name defined in m’s symbol table. Thuộc tính mô-đun có thể được gán cho. (Note that the statement is not, strictly speaking, an operation on a module object; def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 389 does not require a module object named foo to exist, rather it requires an (external) definition for a module named foo somewhere. )

A special attribute of every module is . This is the dictionary containing the module’s symbol table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the attribute is not possible (you can write def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 392, which defines def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 393 to be def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 55, but you can’t write def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 395). Modifying directly is not recommended

Modules built into the interpreter are written like this. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 397. If loaded from a file, they are written as def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 398

Classes and Class Instances

See and for these

Functions

Các đối tượng hàm được tạo bởi các định nghĩa hàm. The only operation on a function object is to call it. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 399

There are really two flavors of function objects. built-in functions and user-defined functions. Both support the same operation (to call the function), but the implementation is different, hence the different object types

See for more information

Methods

Methods are functions that are called using the attribute notation. There are two flavors. built-in methods (such as def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 400 on lists) and class instance methods. Built-in methods are described with the types that support them

If you access a method (a function defined in a class namespace) through an instance, you get a special object. a bound method (also called instance method) object. When called, it will add the def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 401 argument to the argument list. Bound methods have two special read-only attributes. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 402 is the object on which the method operates, and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 403 is the function implementing the method. Calling def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 404 is completely equivalent to calling def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 405

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are actually stored on the underlying function object (def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 406), setting method attributes on bound methods is disallowed. Attempting to set an attribute on a method results in an being raised. In order to set a method attribute, you need to explicitly set it on the underlying function object

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 26

See for more information

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a function body. Chúng khác với các đối tượng chức năng vì chúng không chứa tham chiếu đến môi trường thực thi toàn cầu của chúng. Các đối tượng mã được hàm tích hợp trả về và có thể được trích xuất từ ​​các đối tượng hàm thông qua thuộc tính def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 409 của chúng. See also the module

Accessing def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 409 raises an def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 412 with arguments def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 413 and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 414

A code object can be executed or evaluated by passing it (instead of a source string) to the or built-in functions

See for more information

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function . There are no special operations on types. The standard module defines names for all standard built-in types

Types are written like this. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 419

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is exactly one null object, named def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31 (a built-in name). def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 421 produces the same singleton

It is written as def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 31

The Ellipsis Object

This object is commonly used by slicing (see ). It supports no special operations. There is exactly one ellipsis object, named (a built-in name). def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 424 produces the singleton

It is written as def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 423 or def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 427

The NotImplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they don’t support. See for more information. There is exactly one def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 428 object. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 429 produces the singleton instance

It is written as def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 428

Boolean Values

Boolean values are the two constant objects def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56. They are used to represent truth values (although other values can also be considered false or true). In numeric contexts (for example when used as the argument to an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function can be used to convert any value to a Boolean, if the value can be interpreted as a truth value (see section above)

They are written as def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 38 and def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 56, respectively

Internal Objects

See for this information. It describes stack frame objects, traceback objects, and slice objects

Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of these are not reported by the built-in function

object. __dict__

A dictionary or other mapping object used to store an object’s (writable) attributes

instance. __class__

The class to which a class instance belongs

class. __base__

The tuple of base classes of a class object

definition. __name__

The name of the class, function, method, descriptor, or generator instance

definition. __qualname__

The of the class, function, method, descriptor, or generator instance

New in version 3. 3

class. __mro__

This attribute is a tuple of classes that are considered when looking for base classes during method resolution

class. mro()

This method can be overridden by a metaclass to customize the method resolution order for its instances. It is called at class instantiation, and its result is stored in

class. __subclasses__()

Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those references still alive. The list is in definition order. Example

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 27

Integer string conversion length limitation

CPython has a global limit for converting between and to mitigate denial of service attacks. This limit only applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are unlimited. The limit can be configured

The type in CPython is an arbitrary length number stored in binary form (commonly known as a “bignum”). There exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless the base is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a large value such as def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 441 can take over a second on a fast CPU

Limiting conversion size offers a practical way to avoid CVE-2020-10735

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion algorithm would be involved. Underscores and the sign are not counted towards the limit

When an operation would exceed the limit, a is raised

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 28

Giới hạn mặc định là 4300 chữ số như được cung cấp trong. The lowest limit that can be configured is 640 digits as provided in

Verification

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 29

New in version 3. 11

Affected APIs

Giới hạn chỉ áp dụng cho các chuyển đổi có khả năng chậm giữa và hoặc

  • def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 448 với cơ số mặc định là 10

  • def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 449 cho tất cả các cơ số không phải là lũy thừa của 2

  • def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 450

  • def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 451

  • bất kỳ chuyển đổi chuỗi nào khác sang cơ số 10, ví dụ: def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 452, def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 453 hoặc def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 454

Các giới hạn không áp dụng cho các hàm có thuật toán tuyến tính

  • def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 449 với cơ số 2, 4, 8, 16 hoặc 32

  • , ,

  • cho các số hex, bát phân và nhị phân

  • đến

  • đến

Định cấu hình giới hạn

Trước khi Python khởi động, bạn có thể sử dụng biến môi trường hoặc cờ dòng lệnh của trình thông dịch để định cấu hình giới hạn

  • , e. g. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 466 để đặt giới hạn thành 640 hoặc def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 467 để tắt giới hạn

  • , e. g. def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 469

  • def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 470 chứa giá trị của hoặc. Nếu cả env var và tùy chọn def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 473 đều được đặt, thì tùy chọn def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 473 sẽ được ưu tiên. Giá trị -1 cho biết rằng cả hai đều không được đặt, do đó, giá trị ____0_______443 đã được sử dụng trong quá trình khởi tạo

From code, you can inspect the current limit and set a new one using these APIs

  • and are a getter and setter for the interpreter-wide limit. Subinterpreters have their own limit

Information about the default and minimum can be found in

  • is the compiled-in default limit

  • is the lowest accepted value for the limit (other than 0 which disables it)

New in version 3. 11

Caution

Setting a low limit can lead to problems. While rare, code exists that contains integer constants in decimal in their source that exceed the minimum threshold. A consequence of setting the limit is that Python source code containing decimal integer literals longer than the limit will encounter an error during parsing, usually at startup time or import time or even at installation time - anytime an up to date def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 482 does not already exist for the code. A workaround for source that contains such large constants is to convert them to def bit_count(self): return bin(self).count("1") 12 hexadecimal form as it has no limit

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the environment or flag so that it applies during startup and even during any installation step that may invoke Python to precompile def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 484 sources to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 482 files

Recommended configuration

The default def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 443 is expected to be reasonable for most applications. If your application requires a different limit, set it from your main entry point using Python version agnostic code as these APIs were added in security patch releases in versions before 3. 11

Example

def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 30

If you need to disable it entirely, set it to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 42

Footnotes

Additional information on these special methods may be found in the Python Reference Manual ()

As a consequence, the list def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 488 is considered equal to def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6 489, and similarly for tuples

They must have since the parser can’t tell the type of the operands

4(,,,)

Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “Ll” (Letter, lowercase), or “Lt” (Letter, titlecase)

5(,)

To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted

How to convert string into int Python?

To convert a string to integer in Python, use the int() function . This function takes two parameters. the initial string and the optional base to represent the data. Use the syntax print(int("STR")) to return the str as an int , or integer.

How to convert a string to int?

Use Integer. parseInt() to Convert a String to an Integer This method returns the string as a primitive type int. If the string does not contain a valid integer then it will throw a NumberFormatException.

What is str () in Python?

Python has a built-in string class named "str" with many handy features (there is an older module named "string" which you should not use). String literals can be enclosed by either double or single quotes, although single quotes are more commonly used.

How to convert string to numeric in pandas?

Steps to Convert Strings to Integers in Pandas DataFrame .
Step 1. Create a DataFrame. To start, let's say that you want to create a DataFrame for the following data. .
Step 2. Convert the Strings to Integers in Pandas DataFrame. .
Bước 3 (tùy chọn). Chuyển đổi chuỗi thành số nguyên bằng to_numeric

Chủ đề