Đoạn vuông góc chung là gì

... học sinh tích cực, chủ động linh hoạt chiếm lĩnh tri thực lịch sử nhân loại Trong thực tế dạy học khơng có phương pháp đơn tối ưu Vì giáo viên phải kết hợp nhiều phương pháp đổi phương pháp dạy ... động phát triển lịch sử qua giai đoạn Đương nhiên, phương pháp lập bảng hệ thống kiến thức phương pháp mới, dạy học, phương pháp đơn giản, giúp học sinh nắm bắt ôn tập kiến thức nhanh, sâu sắc, ... quốc gia cổ đại phương đông quốc gia cổ đại phương tây lĩnh vực: Lịch pháp, chữ viết, toán học, văn học, nghệ thuật Lĩnh vực Văn hóa cổ đại phương Đơng Văn hóa cổ đại phương Tây Lịch pháp Làm nông...

Ví dụ 1. Cho tứ diện OABC, trong đó OA, OB, OC đôi một vuông góc và OA = OB = OC = a.

Gọi I là trung điểm của BC,

Hãy xác định và tính độ dài đoạn vuông góc chung của các cặp đường thẳng:

a) OA và BC

b) AI và OC.

Giải

Vì OA, OB, OC đôi một vuông góc nên

a) Ta có

Đoạn vuông góc chung là gì

 

 nên

Tam giác OBC cân và IB = IC nên

Vậy OI là đoạn vuông góc chung của OA và BC và  

b)

 

Gọi J là trung điểm của OB

H là hình chiếu của O lên AJ
Qua H kẻ đường thẳng song song với OC và cắt AI tại E, qua E kẻ đường thẳng song song với OH và cắt OC tại F.

Đoạn vuông góc chung là gì

Ta có :

nên

Vì I, J lần lượt là trung điểm của BC, OB nên IJ // OC, do đó

Ta lại có:

nên

Vì EF // OH nên

Vậy EF là đoạn vuông góc chung của OC và AI.

Ta có EF = OH

Trong tam giác vuông AOJ ta có:

nên

Vậy

Share this:

  • Twitter
  • Facebook

Thích bài này:

Thích Đang tải...

Có liên quan

Với Đoạn vuông góc chung của hai đường thẳng chéo nhau trong không gian (dùng quan hệ song song) Toán lớp 11 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Đoạn vuông góc chung của hai đường thẳng chéo nhau trong không gian (dùng quan hệ song song) từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

Đoạn vuông góc chung là gì

A. Phương pháp giải

Để tính khoảng cách giữa hai đường thẳng chéo nhau ta có thể dùng một trong các cách sau:

* Phương pháp 1

Chọn mặt phẳng (α) chứa đường thẳng Δ và song song với Δ'. Khi đó d(Δ, Δ') = d(Δ', (α))

* Phương pháp 2

Dựng hai mặt phẳng song song và lần lượt chứa hai đường thẳng. Khoảng cách giữa hai mặt phẳng đó là khoảng cách cần tìm.

B. Ví dụ minh họa

Ví dụ 1: Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC = a√5 và BC = a√2. Tính khoảng cách giữa SD và BC.

Hướng dẫn giải

Chọn D

Ta có: BC // AD (Tính chất hình chữ nhật) mà AD ⊂ (SAD)

⇒ BC // mp(SAD)

d(BC, SD) = d(BC, (SAD)) = d(B, SAD)

Vậy d(SD; BC) = AB = a√3

Ví dụ 2: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách giữa BB’ và AC bằng:

Hướng dẫn giải

Chọn C.

+ Ta có: BB’ // CC’ mà CC’ ⊂ (ACC’A’) nên: BB’ // (ACC’A’)

⇒ d( BB’; AC) = d( BB’; (ACC’A’) = d(B; (ACC’A’)

+ Gọi O là giao điểm của AC và BD

⇒ BO ⊥ (ACC’A’) ( tính chất hình lập phương )

Ví dụ 3: Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B; AB = BC = a và AD = 2a; SA vuông góc với mặt đáy và SA = a. Tính khoảng cách giữa SB và CD?

Hướng dẫn giải

Gọi H là trung điểm AD suy ra : AH = HD = a

+ Tứ giác HDCB có HD // BC và HD = BC = a

⇒ HDCB là hình bình hành.

⇒ CD // HB nên CD // mp(SHB)

+ Do H là trung điểm của AB và CD // (SHB) nên: d(CD; SB) = d(CD ;(SBH))= d(D; (SBH)) = d(A ;(SBH))

+ Tứ diện A. BHS có :

AB = AH = AS và AB ; AH ; SA đôi một vuông góc nên:

Vậy d(SB ; CD) = d( A, (SHB)) = (a√3)/3

Chọn đáp án C

Ví dụ 4: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA = a. Khoảng cách giữa hai đường thẳng SB và CD nhận giá trị nào trong các giá trị sau?

A. a                 B. a√2                 C. a√3                 D. 2a

Hướng dẫn giải

Ta có: CD // AB nên CD // (SAB)

⇒ d(CD; AB) = d(CD; (SAB)) = d(D; SAB)) = AD = a

(vì AD ⊥ AB và AD ⊥ SA nên AD ⊥ (SAB))

Chọn phương án A

Ví dụ 5: Cho tứ diện OABC trong đó OA; OB; OC đôi một vuông góc với nhau và OA = OB = OC = a. Gọi I là trung điểm BC. Khoảng cách giữa AI và OC bằng bao nhiêu?

Hướng dẫn giải

Gọi J là trung điểm OB. Kẻ OH vuông góc AJ tại H

+ Tam giác AOJ vuông tại O , có OH là đường cao

+ Do I và J lần lượt là trung điểm của BC và BO nên IJ là đường trung bình của tam giác ABC và IJ // OC

Mà IJ ⊂ (AIJ) nên OC // (AIJ) .

+ Ta có 3 đường thẳng OA; OB; OC đôi một vuông góc nên OC ⊥ (OAB)

⇒ IJ ⊥ (OAB) và IJ ⊥ OH    (1)

Lại có: AJ ⊥ OH    (2)

Từ ( 1) và (2) suy ra: OH ⊥ (AIJ)

+ Khi đó; d(AI; OC) = d(OC; (AIJ)) = d(O; (AIJ)) = OH = a/√5

Chọn đáp án B

Đoạn vuông góc chung là gì

Ví dụ 6: Cho hình vuông ABCD và tam giác đều SAD nằm trong hai mặt phẳng vuông góc với nhau và AD = a. Tính khoảng cách giữa AD và SB

Hướng dẫn giải

Gọi E, F lần lượt là trung điểm AD và B.

+ Tam giác SAD là tam giác đều nên SE ⊥ AD   (1)

+ Lại có; hai mp(ABCD) và (SAD) cắt nhau theo giao tuyến AD và nằm trong hai mặt phẳng vuông góc với nhau   (2) .

Từ (1) và (2) suy ra: SE ⊥ (ABCD) .

+ Gọi H là hình chiếu vuông góc của E lên SF. Ta chứng minh EH ⊥ (SBC).

Thật vậy, ta có: EH ⊥ SF ( cách dựng) và EH ⊥ BC (do BC ⊥ (SEF)

⇒ EH ⊥ (SBC) .

+ Do AD // BC; SB ⊂ (SBC) và EH ⊥ (SBC)

⇒ d(AD: SB) = d(AD; (SBC) = d(E; (SBC)) = EH

+ Xét tam giác vuông SEF có:

trong đó: SE = a√3; EF = AB = a

⇒ EH = (a√21)/7

Chọn đáp án B

Ví dụ 7: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách giữa BB’ và AC bằng

Hướng dẫn giải

Gọi I là giao điểm của AC và BD.

+ Vì ABCD.A’B’C’D’ là hình lập phương nên BI ⊥ (AA'C'C).

+ Ta có: BD = BC√2 = a√2 nên IB = BD/2 = (a√2)/2

+ khi đó:

d(BB’; AC)= d(BB’;( AA’C’C) = IB = (a√2)/2

Chọn đáp án C

Ví dụ 8: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B; AB = a cạnh bên SA vuông góc với đáy và SA = a√2. Gọi M là trung điểm của AB. Khoảng cách giữa SM và BC bằng bao nhiêu?

Hướng dẫn giải

Gọi N là trung điểm của cạnh đáy AC.

+ Tam giác ABC có MN là đường trung bình nên MN // BC

⇒ BC // ( SMN) mà SM ⊂ (SMN) nên :

d(SM; BC) = d(BC; (SMN)) = d(B; (SMN)) = d(A; (SMN))

Gọi H là hình chiếu vuông góc của A trên đoạn SM.

+ Ta chứng minh: MN ⊥ (SAM):

Chọn đáp án A

Ví dụ 9: Cho lăng trụ tam giác đều ABC. A1B1C1 có cạnh đáy bằng a, cạnh bên bằng b Tính khoảng cách giữa AB và CC1

Hướng dẫn giải

Gọi M là trung điểm của AB

+ Ta có: CC1 // AA1 mà AA1 ⊂ ( ABB1A1)

⇒ CC1 // ( ABB1A1)

⇒ d(CC1; AB) = d(CC1; (ABB1A1)) = d(C; ( ABB1A1))

+ Ta chứng minh CM ⊥ (ABB1A1 ):

- Do tam giác ABC đều nên CM là đường trung tuyến đồng thời là đường cao: CM ⊥ AB.    (1)

- CM ⊥ AA1( tính chất lăng trụ tam giác đều)   (2)

Mà AB và AA1 (ABB1A1), kết hợp với (1) và (2) suy ra:

CM ⊥ (ABB1A1)

Đáp án B

Ví dụ 10: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SD = a√17/2. Hình chiếu vuông góc H của đỉnh S lên mặt phẳng (ABCD) là trung điểm của cạnh AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a

Hướng dẫn giải

+ Ta có: H và K lần lượt là trung điểm của AB và AD nên HK là đường trung bình của tam giác ABD

⇒ HK // BD ⇒ HK // (SBD)

⇒ d(SD; HK) = d(HK; (SBD)) = d(H, (SBD))

Kẻ HI ⊥ BD và HJ ⊥ SI

Chọn đáp án C

Ví dụ 11: Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2a. Mặt bên SAB là tam giác đều, SI vuông góc với (SCD) và I là trung điểm AB. Khoảng cách giữa hai đường thẳng SO và AB là:

Hướng dẫn giải

Kẻ MN // AB ⇒ AB // (SMN)

⇒ d(SO; AB) = d(AB; (SMN)) = d(I, (SMN))

Ta có: AB ⊥ SI ⇒ MN ⊥ SI, AB ⊥ OI ⇒ MN ⊥ OI

⇒ MN ⊥ (SOI) ⇒ (SMN) ⊥ (SOI).

Kẻ IH ⊥ SO ⇒ IH ⊥ (SMN)

⇒ IH = d(I, (SMN))

+ Gọi J là trung điểm của CD

Chọn C

Ví dụ 12: Cho hình chóp S. ABC có đáy là tam giác ABC vuông tại C, AB = 5a, BC = 4a Cạnh SA vuông góc với đáy và góc giữa mặt phẳng (SBC) với mặt đáy (ABC) bằng 60° Gọi D là trung điểm của cạnh AB. Khoảng cách giữa hai đường thẳng SD và BC là:

Hướng dẫn giải

+ Gọi M là trung điểm AC , ta có DM là đường trung bình của tam giác ABC nên DM // BC

⇒ BC // (SMD) .

⇒ d(BC; SD) = d(C; (SMD)) = d(A; (SMD))

+ Kẻ AH ⊥ SM (H ∈ SM), ta có

Do góc giữa mặt phẳng (SBC) với mặt đáy (ABC) bằng 60° suy ra: ∠SCA = 60°.

Chọn A

Đoạn vuông góc chung là gì

C. Bài tập vận dụng

Câu 1: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và AB = 2a; BC = a . Các cạnh bên của hình chóp bằng nhau và bằng a√2. Gọi E và F lần lượt là trung điểm của AB và CD; K là điểm bất kỳ trên BC. Khoảng cách giữa hai đường thẳng EF và SK là:

Lời giải:

Gọi O là giao điểm của AC và BD; I là trung điểm cạnh BC

+ Do SA = SB = SC = SD và OA = OB = OC = OD nên SO ⊥ (ABCD)

+ Ta chứng minh BC ⊥ (SOI)

- Tam giác SBC cân tại S có SI là đường trung tuyến nên đồng thời là đường cao : BC ⊥ SI    (1).

- Lại có: BC ⊥ SO (vì SO ⊥ (ABCD))     (2)

Từ (1) và (2) suy ra: BC ⊥ (SOI)

Mà OH ⊂ (SOI) nên BC ⊥ OH

⇒ OH ⊥ (SBC)

Xét tam giác SOI có:

Chọn đáp án D

Câu 2: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1 (đvd). Khoảng cách giữaAA’ và BD’ bằng:

Lời giải:

Ta có: AA’ // DD’ (tính chất hình lập phương)

Mà DD ⊂ (BDD’B’)

⇒ AA’ // (BDD’B’)

⇒ d(AA’; BD’) = d(AA’; (BDD’B’)) = d(A; BDD’B’)

Gọi O là trung điểm của BD

⇒ AO ⊥ BD (tính chất hình vuông)

Lại có: AO ⊥ BB’

⇒ AO ⊥ (BDD’B’)

⇒ d(A; (BDD’B’) ) = AO

+ Xét tam giác ABD có:

Chọn D

Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, BC = a√3; AB = a. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt đáy và đường thẳng SC tạo với mặt đáy một góc 60°. Khoảng cách giữa hai đường thẳng SB và AC.

Lời giải:

Chọn D

Gọi O là giao điểm của AC và BD

+ Do OC là hình chiếu vuông góc của SC trên mặt phẳng (ABCD) ⇒ (SC, (ABCD)) = ∠SCO = 60°

+ Gọi M là trung điểm của SD. Khi đó; MO là đường trung bình của tam giác SBD nên MO // SB

⇒ SB // (ACM).

+ Trong mặt phẳng (SBD) kẻ MH // SO

⇒ MH ⊥ (ABCD)

Khi đó

d(SB; AC) = d(SB; (ACM)) = d(B; (ACM)) = 2d(H; (ACM))

+ Ta có: khoảng cách từ D đến AC là d:

Xét tam giác vuông MHK đường cao MI có:

Câu 4: Cho hình chóp S. ABC có đáy ABC là tam giác vuông cân tại B; AB = BC = a, SA vuông góc với mặt phẳng (ABC) góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng SB và AC.

Lời giải:

Chọn D

+ Gọi I là trung điểm của AC .Qua B kẻ đường thẳng d song song với AC.

Trong mặt phẳng ( ABC) kẻ AE vuông góc với d tại E.

Khi đó AE ⊥ BE và AE ⊥ AC

+ Ta có: AC // BE nên AC // (SBE)

⇒ d (AC, SB) = d(A, (SBE)).

+ Gọi AH là đường cao của (SAE) , ta có

Vì SA ⊥ (ABC) nên hình chiếu của SC trên mặt phẳng (ABC) là AC suy ra góc giữa SC và mặt phẳng (ABC) là ∠SCA = 60°

Câu 5: Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A. Gọi H và M lần lượt là trung điểm các cạnh BC và SC; SH vuông góc với (ABC), SA = 2a và tạo với mặt đáy góc 60°. Khoảng cách giữa hai đường thẳng AM và BC là:

Lời giải:

+ Hình chiếu vuông góc của SA trên mặt phẳng (ABC) là HA nên góc giữa SA và (ABC) là ∠SAH

⇒ suy ra AH = SA.cos60° = a; SH = a√3.

+ Gọi N; I lần lượt là trung điểm của SB và SH.

SI = SH/2 = a√3/2

Ta có mặt phẳng (AMN) // BC (vì MN // BC)

⇒ d(AM; BC) = d(BC, (AMN)) = d(H; (AMN)).

+ Dựng HK ⊥ AI

+ Xét tam giác IAH vuông tại H, đường cao HK

Đáp án C

Đoạn vuông góc chung là gì

Câu 6: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC) , gọi I là trung điểm cạnh BC. Biết góc giữa đường thẳng SI và mặt phẳng ( ABC) bằng 60°. Khoảng cách giữa hai đường thẳng SB và AC

Lời giải:

+ Hình chiếu vuông góc của SI trên mặt phẳng (ABC) là AI nên góc giữa SI và mặt phẳng (ABC) là ∠SIA (vì tam giác SIA vuông tại A nên ∠SIA nhọn)

Suy ra: ∠SIA = 60°.

+ Xét tam giác SIA vuông tại A, ∠SIA = 60° và AI = a√3/2 nên SA = AI.tan60° = 3a/2.

+ Dựng hình bình hành ABCD, tam giác ABC đều nên tam giác ABD đều.

+ Ta có AC // BD nên AC // (SBD)

⇒ d(AC; SB) = d(AC, (SBD)) = d(A; (SBD)).

+ Gọi K là trung điểm đoạn BD, tam giác ABD đều cạnh a

suy ra AK ⊥ BD và AK = a√3/2 mà BD ⊥ SA nên BD ⊥ (SAK).

+ Dựng AH ⊥ SK, H ∈ SK lại có AH ⊥ BD suy ra AH ⊥ (SBD)

Vậy d(A, (SBD)) = AH

+ Xét tam giác SAK vuông tại vuông tại A, đường cao AH ta có

Đáp án B

Câu 7: Cho hình chóp S.ABC tam giác ABC vuông tại B; BC = a; AC = 2a tam giác SAB đều. Hình chiếu của S lên mặt phẳng (ABC) trùng với trung điểm M của AC. Khoảng cách giữa hai đường thẳng SA và BC là:

Lời giải:

+ Tam giác ABC vuông tại B, BC = a và AC = 2a suy ra AB = a√3

Tam giác SAM vuông tại M, SA = a√3 ( vì tam giác SAB đều); AM = AC/2 = a ⇒ SM = a√2

+ Dựng hình bình hành ABCD, gọi N là trung điểm của AD. Do ∠ABC = 90° suy ra ABCD là hình chữ nhật suy ra MN ⊥ AD.

Lại có: SM ⊥ AD nên AD ⊥ (SMN) .

Dựng MH ⊥ AD, H ∈ SN

Theo trên có AD ⊥ (SMN) nên AD ⊥ MH

⇒ MH ⊥ ( SAD).

Vậy d(M; (SAD)) = MH .

+ Do BC // AD nên BC // (SAD)

⇒ d(SA; BC) = d(BC; (SAD) = d(C; (SAD))

= 2d(M; (SAD)) = 2.MH

+ Xét tam giác SMN vuông tại M, đường cao MH:

Chọn C

Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và ∠ABC = 60°. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy, góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 30°. Khoảng cách giữa hai đường thẳng SA và CD theo a bằng:

Lời giải:

Gọi O là giao điểm của AC và BD

Kẻ: OI ⊥ AB; OH ⊥ SI

+ Do CD // AB nên CD // (SAB)

⇒ d(CD; SA) = d(CD, (SAB))

= d(C; (SAB)) = 2d(O; (SAB))

Ta có: AB ⊥ SO, AB ⊥ OI ⇒ AB ⊥ (SOI) ⇒ AB ⊥ OH

Nên OH ⊥ (SAB) ⇒ d(O, (SAB)) = OH

Mà tam giác ACB cân tại B có ∠ABC = 60° nên tam giác ABC đều

⇒ OC = (1/2)AC = (1/2)AB = a/2

+ xét tam giác OAB có:

Chọn đáp án B

Câu 9: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, AB = 2a ; BD = √3AC, mặt bên SAB là tam giác cân đỉnh A; hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy trùng với trung điểm H của AI. Khoảng cách giữa hai đường thẳng SB và CD bằng:

Lời giải:

+ Ta có: CD // AB ⇒ CD // (SAB)

⇒ d(CD; SB) = d(CD; (SAB)) = d(C; (SAB)) = 4.d(H; (SAB))

+ Kẻ MH ⊥ AB; HK ⊥ SM

Ta có: tan(BAC) = BI/IA = √3 ⇒ ∠BAC = 60° ⇒ ΔABC đều

Do đó:

Chọn đáp án B

Câu 10: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = a√2. Khoảng cách giữa hai đường thẳng AD và SB là: