Các dạng toán về phương trình tiếp tuyến lớp 10 năm 2024

Phương trình đường tròn là một trong những phần kiến thức vô cùng quan trọng trong chương trình Toán 10 nói riêng và toán THPT nói chung. Bởi vậy, VUIHOC đã viết bài viết này nhằm củng cố lý thuyết cùng với các dạng bài tập rất hay về phương trình đường thẳng nhằm giúp các em nắm bắt kiến thức và học tập dễ dàng hơn. Để học thêm được nhiều các kiến thức hay và thú vị về Toán học 10 cũng như Hoá học THPT thì các em hãy truy cập vuihoc.vn hoặc đăng ký khoá học với các thầy cô VUIHOC ngay bây giờ nhé!

Tiếp tuyến của đồ thị hàm số \(f\left( x \right) = {x^3}\) tại điểm có hoành độ bằng 2 có hệ số góc bằng

  • A \(k = 12\)
  • B \(k = 8\)
  • C \(k = 4\)
  • D \(k = - 12\)

Đáp án: A

Phương pháp giải:

Tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) có hệ số góc \(k = f'\left( {{x_0}} \right)\).

Lời giải chi tiết:

Tiếp tuyến của đồ thị hàm số \(f\left( x \right) = {x^3}\) tại điểm có hoành độ bằng 2 có hệ số góc \(k = f'\left( 2 \right) = {3.2^2} = 12\).

Chọn A.

Đáp án - Lời giải

Tài liệu gồm 43 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán tiếp tuyến của đồ thị hàm số, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 1.

Dạng 1: Viết phương trình tiếp tuyến tại một điểm. Dạng 2: Viết phương trình tiếp tuyến khi biết hệ số góc. Dạng 3: Viết phương trình tiếp tuyến biết tiếp tuyến đi qua một điểm. Dạng 4: Tiếp tuyến với bài toán tương giao. Dạng 5: Tiếp tuyến của hàm số hợp. Dạng 6: Tìm điều kiện để hai đồ thị tiếp xúc với nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.

  • Khảo Sát Và Vẽ Đồ Thị Hàm Số

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

BÀI VIẾT LIÊN QUAN

Bài viết phương pháp giải bài tập Phương trình tiếp tuyến của đường tròn lớp 10 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập Phương trình tiếp tuyến của đường tròn.

Phương trình tiếp tuyến của đường tròn (cách giải + bài tập)

Quảng cáo

1. Phương pháp giải

Bài toán 1. Cho đường tròn (C): (x – a)2 + (y – b)2 = R2 có tâm I(a; b) và bán kính R, điểm M(x0; y0) thuộc vào đường tròn (C). Viết phương trình tiếp tuyến ∆ tại điểm M của đường tròn (C).

Để giải được bài toán trên, ta thực hiện các bước sau:

Bước 1. Tính tọa độ vectơ IM→.

Bước 2. Viết phương trình tiếp tuyến ∆.

Do ∆ là tiếp tuyến của đường tròn tại M nên ∆ vuông góc với IM.

Tiếp tuyến ∆ của (C) là đường thẳng đi qua M và nhận IM→ làm vectơ pháp tuyến.

Bài toán 2. Cho đường tròn (C): (x – a)2 + (y – b)2 = R2. Viết phương trình tiếp tuyến ∆ đi qua điểm N(x0; y0) của đường tròn (C).

Để giải được bài toán trên, ta thực hiện các cách sau:

Cách 1. Gọi k là hệ số góc của đường thẳng ∆.

Bước 1. Phương trình tiếp tuyến ∆ đi qua điểm N(x0; y0) của đường tròn (C) có phương trình là:

y – y­0 = k(x – x0) hay kx – y – kx0 + y0 = 0 (*).

Bước 2. Sử dụng công thức d(I, ∆) = R ta tính được k.

Bước 3. Thay k vào phương trình (*) ta được phương trình tiếp tuyến ∆ của đường tròn (C).

Quảng cáo

Cách 2. Gọi n→A;B (với A2 + B2 ≠ 0) là vectơ pháp tuyến của đường thẳng ∆.

Bước 1. Phương trình tiếp tuyến ∆ đi qua điểm N(x0; y0) của đường tròn (C) có phương trình là:

A(x – x0) + B(y – y0) = 0.

Bước 2. Sử dụng công thức d(I, ∆) = R ta tìm được biểu thức liên hệ giữa A và B.

Bước 3. Chọn B, ta được A, thay vào phương trình (*) ta được phương trình tiếp tuyến ∆ của đường tròn (C).

2. Ví dụ minh họa

Ví dụ 1. Cho đường tròn (C): x2 + y2 – 2x – 4y – 4 = 0 và điểm A(1; 5). Viết phương trình tiếp tuyến tại điểm A của đường tròn (C).

Hướng dẫn giải:

Đường tròn (C) có tâm I(1; 2) suy ra IA→=0;3=30;1.

Gọi d là tiếp tuyến của (C) tại điểm A, khi đó d đi qua A và nhận vectơ n→=0;1 làm một vectơ pháp tuyến.

Vậy phương trình đường thẳng d là y – 2 = 0.

Ví dụ 2. Cho đường tròn (C): x2 + y2 – 4 = 0 và điểm A(–1; 2). Viết phương trình tiếp tuyến đi qua A của đường tròn (C).

Hướng dẫn giải:

Đường tròn (C) có tâm là gốc tọa độ O(0; 0) và có bán kính R = 2.

Đường thẳng Δ qua A(–1; 2) có phương trình là:

y – 2 = k(x + 1) hay kx – y + k + 2 = 0.

Quảng cáo

Để Δ tiếp xúc với (C) tại A thì d(O, Δ) = R.

Hay k+2k2+−12=2⇔k+2=2k2+1

⇔ (k + 2)2 = 4(k2 + 1)

⇔ k2 + 4k + 4 = 4k2 + 4

⇔ 3k2 – 4k = 0

⇔ k(3k – 4) = 0

⇔ k = 0 hoặc k=43.

Với k = 0, ta có phương trình tiếp tuyến là Δ: y + 2 = 0.

Với k=43, ta có phương trình tiếp tuyến là Δ: 43x–y+43+2=0, hay 4x – 3y + 10 = 0.

3. Bài tập tự luyện

Bài 1. Trong mặt phẳng tọa độ Oxy, đường tròn x2 + y2 – 1 = 0 tiếp xúc với đường thẳng nào trong các đường thẳng dưới đây?

  1. 3x – 4y + 5 = 0;
  1. x + y = 0;
  1. 3x + 4y – 1 = 0;
  1. x + y – 1 = 0.

Quảng cáo

Bài 2. Trong mặt phẳng tọa độ Oxy, đường tròn nào sau đây tiếp xúc với trục Ox?

  1. x2 + y2 – 10x = 0;
  1. x2 + y2 – 5 = 0;
  1. x2 + y2 – 10x – 2y + 1 = 0;
  1. x2 + y2 + 6x + 5y + 9 = 0.

Bài 3. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 4y + 3 = 0. Tiếp tuyến của đường tròn (C) song song với đường thẳng Δ: 3x + 4y + 1 = 0 có phương trình là

  1. 3x+4y +52−11=0 và 3x+4y−52+11=0;
  1. 3x+4y+52−11=0 và 3x+4y−52−11=0;
  1. 3x+4y+52−11=0 và 3x+4y+52+11=0;
  1. 3x+4y−52+11=0 và 3x+4y−52−11=0;

Bài 4. Trong mặt phẳng tọa độ Oxy, phương trình tiếp tuyến của đường tròn (C): (x – 2)2 + ( y + 4)2 = 25 vuông góc với đường thẳng 3x – 4y + 5 = 0 là

  1. 4x + 3y + 29 = 0;
  1. 4x + 3y + 29 = 0 và 4x + 3y – 21 = 0;
  1. 4x – 3y + 5 = 0 và 4x – 3y – 45 = 0;
  1. 4x + 3y + 5 = 0 và 4x + 3y + 3 = 0.

Bài 5. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 3)2 + (y – 4)2 = 36 và điểm P(–3; –2) nằm ngoài đường tròn. Từ điểm P kẻ các tiếp tuyến PM và PN tới đường tròn (C), với M, N là các tiếp điểm. Phương trình đường thẳng MN là

  1. x + y + 1 = 0;
  1. x – y – 1 = 0;
  1. x – y + 1 = 0;
  1. x + y – 1 = 0.

Bài 6. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình: x2 + y2 – 4x + 8y + 18 = 0. Phương trình tiếp tuyến của đường tròn (C) đi qua A(1; –3) là

  1. x + y + 4 = 0;
  1. x + y – 4 = 0;
  1. x – y + 4 = 0;
  1. x – y – 4 = 0.

Bài 7. Cho đường tròn (C): (x + 1)2 + (y – 1)2 = 25 và điểm M(9; –4). Gọi d là tiếp tuyến của (C), biết d đi qua M và không song song với các trục tọa độ. Khoảng cách từ điểm P(6; 5) đến d bằng

  1. 2;
  1. 3;
  1. 4;
  1. 5.

Bài 8. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 6x + 2y + 5 = 0 và đường thẳng d: 2x + (m – 2)y – m – 7 = 0. Tổng các giá trị của m sao cho đường thẳng d là tiếp tuyến của đường tròn (C) là

  1. 10;
  1. –10;
  1. 16;
  1. –16.

Bài 9. Trong mặt phẳng tọa độ Oxy, cho điểm M(–3; 1) và đường tròn (C): x2 + y2 – 2x – 6y + 6 = 0. Gọi T1, T2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Khoảng cách từ O đến đường thẳng T­1T2 là

  1. 5;
  1. 5;
  1. 35;
  1. 22.

Bài 10. Cho đường tròn (C) có tâm I(1; 3) và bán kính R=52 và điểm M có tọa độ nguyên thuộc đường thẳng d:x=3+2ty=1−4t. Phương trình tiếp tuyến d’ của đường tròn (C) tại điểm M là

  1. x + 2y + 3 = 0;
  1. 2x + 5y + 21 = 0;
  1. 2x – 3y – 19 = 0;
  1. Đáp án khác.

Xem thêm các dạng bài tập Toán 10 hay, chi tiết khác:

  • Lập phương trình đường tròn
  • Xác định các yếu tố của elip, hypebol và parabol
  • Lập phương trình chính tắc của elip
  • Lập phương trình chính tắc của hypebol
  • Lập phương trình chính tắc của parabol

Đã có lời giải bài tập lớp 10 sách mới:

  • (mới) Giải bài tập Lớp 10 Kết nối tri thức
  • (mới) Giải bài tập Lớp 10 Chân trời sáng tạo
  • (mới) Giải bài tập Lớp 10 Cánh diều
  • Các dạng toán về phương trình tiếp tuyến lớp 10 năm 2024
    Gói luyện thi online hơn 1 triệu câu hỏi đầy đủ các lớp, các môn, có đáp án chi tiết. Chỉ từ 200k!

Săn shopee siêu SALE :

  • Sổ lò xo Art of Nature Thiên Long màu xinh xỉu
  • Biti's ra mẫu mới xinh lắm
  • Tsubaki 199k/3 chai
  • L'Oreal mua 1 tặng 3

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Các dạng toán về phương trình tiếp tuyến lớp 10 năm 2024

Các dạng toán về phương trình tiếp tuyến lớp 10 năm 2024

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.