A correlation between two variables exists when scores on one variable

The correlation requires two scores from the same individuals. These scores are normally identified as X and Y. The pairs of scores can be listed in a table or presented in a scatterplot.

Example: We might be interested in the correlation between your SAT-M scores and your GPA at UNC.

Here are the Math SAT scores and the GPA scores of 13 of the students in this class, and the scatterplot for all 41 students:

A correlation between two variables exists when scores on one variable

A correlation between two variables exists when scores on one variable

The scatterplot has the X values (GPA) on the horizontal (X) axis, and the Y values (MathSAT) on the vertical (Y) axis. Each individual is identified by a single point (dot) on the graph which is located so that the coordinates of the point (the X and Y values) match the individual's X (GPA) and Y (MathSAT) scores.

For example, the student named "Obs5" (in the sixth row of the datasheet) has GPA=2.30 and MathSAT=710. This student is represented in the scatterplot by high-lighted and labled ("5") dot in the upper-left part of the scatterplot. Note that is to the right of MathSAT of 710 and above GPA of 2.30.

Note that the Pearson correlation (explained below) between these two variables is .32.

Correlations have three important characterstics. They can tell us about the direction of the relationship, the form (shape) of the relationship, and the degree (strength) of the relationship between two variables.

  1. The Direction of a Relationship
  2. The correlation measure tells us about the direction of the relationship between the two variables. The direction can be positive or negative.

    1. Positive
    2. : In a positive relationship both variables tend to move in the same direction: If one variable increases, the other tends to also increase. If one decreases, the other tends to also.

      In the example above, GPA and MathSAT are positively related. As GPA (or MathSAT) increases, the other variable also tends to increase.

    3. Negative
    4. : In a negative relationship the variables tend to move in the opposite directions: If one variable increases, the other tends to decrease, and vice-versa.

    The direction of the relationship between two variables is identified by the sign of the correlation coefficient for the variables. Postive relationships have a "plus" sign, whereas negative relationships have a "minus" sign.

  3. The Form (Shape) of a Relationship
  4. : The form or shape of a relationship refers to whether the relationship is straight or curved.
    1. Linear
    2. : A straight relationship is called linear, because it approximates a straight line. The GPA, MathSAT example shows a relationship that is, roughly, a linear relationship.

    3. Curvilinear
    4. : A curved relationship is called curvilinear, because it approximates a curved line. An example of the relationship between the Miles-per-gallon and engine displacement of various automobiles sold in the USA in 1982 is shown below. This is curvilinear (and negative).

    A correlation between two variables exists when scores on one variable

    In this course we only deal with correlation coefficients that measure linear relationship. There are other correlation coefficients that measure curvilinear relationship, but they are beyond the introductory level.

  5. The Degree (Strength) of a Relationship
  6. Finally, a correlation coefficient measures the degree (strength) of the relationship between two variables. The mesures we discuss only measure the strength of the linear relationship between two variables. Two specific strengths are:

    1. Perfect Relationship
    2. : When two variables are exactly (linearly) related the correlation coefficient is either +1.00 or -1.00. They are said to be perfectly linearly related, either positively or negatively.

    3. No relationship
    4. : When two variables have no relationship at all, their correlation is 0.00.

    There are strengths in between -1.00, 0.00 and +1.00. Note, though. that +1.00 is the largest postive correlation and -1.00 is the largest negative correlation that is possible. Here are three examples:

    Weight and Horsepower

    A correlation between two variables exists when scores on one variable

    The relationship between Weight and Horsepower is strong, linear, and positive, though not perfect. The Pearson correlation coefficient is +.92.

    Drive Ratio and Horsepower

    A correlation between two variables exists when scores on one variable

    The relationship between drive ratio and Horsepower is weekly negative, though not zero. The Pearson correlation coefficient is -.59.

    Drive Ratio and Miles-Per-Gallon

    A correlation between two variables exists when scores on one variable

    The relationship between drive ratio and MPG is weekly positive, though not zero. The Pearson correlation coefficient is .42.

  1. Prediction
  2. : Correlations can be used to help make predictions. If two variables have been known in the past to correlate, then we can assume they will continue to correlate in the future. We can use the value of one variable that is known now to predict the value that the other variable will take on in the future.

    For example, we require high school students to take the SAT exam because we know that in the past SAT scores correlated well with the GPA scores that the students get when they are in college. Thus, we predict high SAT scores will lead to high GPA scores, and conversely.

    What does it mean when a correlation exists between two variables?

    Correlation is a statistical measure (expressed as a number) that describes the size and direction of a relationship between two or more variables. A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable.

    What does it mean when a correlation exists between two variables quizlet?

    A correlation exists between two variables when the values of one are somehow associated with the values of the other in some way.

    Which of the following is true about correlation?

    The correct answer is d. The correlation value between the given two variables denotes the strength and direction of the linear relationship between them. Its value always lies between -1 and 1.

    What does it mean if two variables have positive correlation?

    A positive correlation is a relationship between two variables that tend to move in the same direction. A positive correlation exists when one variable tends to decrease as the other variable decreases, or one variable tends to increase when the other increases.